
NASA/CR-1999-209119
Aviation System Analysis Capability
Executive Assistant Development

Eileen Roberts, James A. Villani, Kevin Anderson, and Paul Book
Logistics Management Institute, McLean, Virginia
March 1999

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for

NASA’s scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office

is also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and

technical data and information deemed

to be of continuing reference value. NASA

counterpart or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to

NASA’s mission.

Specialized services that complement the

STI Program Office’s diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results . . . even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• Email your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at

(301) 621-0390

• Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information

7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-1999-209119
Aviation System Analysis Capability
Executive Assistant Development

Eileen Roberts, James A. Villani, Kevin Anderson, and Paul Book
Logistics Management Institute, McLean, Virginia
National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center

under Contract NAS2-14361
March 1999

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

iii

Abstract

In this technical document, we describe the development of the Aviation System
Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC)
and Beta version. We describe the genesis and role of the ASAC system, discuss
the objectives of the ASAC system, provide an overview of components and
models in the ASAC system, and describe the design process and the results of the
ASAC EA POC and Beta system development. We also describe the evaluation
process and results for applicable commercial off-the-shelf software. The docu-
ment has seven chapters, a bibliography, and two appendices.

v

Contents

Chapter 1 Introduction ..1-1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION’S ROLE IN PROMOTING

AVIATION TECHNOLOGY...1-1

NASA’S RESEARCH OBJECTIVE..1-2

GENESIS OF THE AVIATION SYSTEM ANALYSIS CAPABILITY ...1-2

GOALS OF THE ASAC PROJECT: IDENTIFY AND EVALUATE PROMISING

TECHNOLOGIES...1-3

APPROACH TO ANALYZING THE INTEGRATED AVIATION SYSTEM1-4

DOCUMENT OVERVIEW ...1-4

Chapter 2 Components of the ASAC..2-1

OVERVIEW ..2-1

ASAC EXECUTIVE ASSISTANT..2-2

Chapter 3 ASAC Analyses ..3-1

ASAC MODELS..3-1

SCHEMATIC OF ASAC MODELS..3-2

Analyses Using ASAC Models ..3-3

Chapter 4 Design and Development Methodology...4-1

THE DSSA APPROACH..4-1

DSSA DESIGN TOOLS...4-2

Unified Modeling Language...4-2

Class-Responsibility-Collaboration Card Technique...4-3

Design Patterns...4-4

FURTHER READING..4-5

Chapter 5 ASAC EA Proof Of Concept..5-1

ASAC EA REQUIREMENTS...5-2

Analysis Execution...5-2

Analysis Management ..5-3

vi

Analysis Specification..5-4

Distributed Computing...5-4

Error Handling..5-5

General ...5-5

Model Specification ...5-5

Optimization...5-6

Security...5-6

POC GOALS..5-7

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE ASSUMPTIONS..............................5-7

REVIEW AND ITERATE DSSA SUBSTAGE 2-9: DEFINE ISSUES..5-8

DSSA STAGE 4—REFINE POC DOMAIN MODELS..5-10

DSSA Substage 4-3: Develop Use Case Diagrams..5-12

DSSA Substage 4-4: Develop Interaction Diagrams..5-12

DSSA Substage 4-5: Develop Package Diagrams..5-19

DSSA Substage 4-6: Develop Class Diagrams ..5-21

Domain-Specific Software Architecture Substage 4-7: Develop State
Diagrams ..5-48

DSSA Substage 4-8: Develop Deployment Diagrams ...5-53

DSSA Substage 4-9: Review and Iterate..5-54

DSSA STAGE 5—IDENTIFY REUSABLE ARTIFACTS...5-54

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts5-54

DSSA Substage 5-2: Develop Each Module..5-57

DSSA Substage 5-3: Requirements, Verification, and Testing................................5-60

DSSA Substage 5-4: Review and Iterate..5-69

Chapter 6 ASAC EA Beta Version ...6-1

BETA VERSION GOALS ..6-2

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE ASSUMPTIONS...............................6-2

REVIEW AND ITERATE DSSA SUBSTAGE 2-9: DEFINE ISSUES...6-2

DSSA STAGE 4—DEVELOP AND REFINE BETA VERSION ANALYSIS AND MODEL

APPLICATION DOMAIN MODELS..6-3

DSSA Substage 4-3: Develop Use Case Diagrams..6-4

DSSA Substage 4-4: Develop Interaction Diagrams..6-4

Contents

vii

DSSA Substage 4-5: Develop Package Diagrams..6-6

DSSA Substage 4-6: Develop Class Diagrams ..6-7

DSSA Substage 4-7: Develop State Diagrams...6-17

DSSA Substage 4-8: Develop Deployment Diagrams ...6-18

DSSA STAGE 4—DEVELOP AND REFINE BETA VERSION USER APPLICATION

DOMAIN MODELS..6-18

DSSA Substage 4-3: Develop Use Case Diagrams..6-19

DSSA Substage 4-4: Develop Interaction Diagrams..6-19

DSSA Substage 4-5: Develop Package Diagrams..6-22

DSSA Substage 4-6: Develop Class Diagrams ..6-23

DSSA Substage 4-7: Develop State Diagrams...6-44

DSSA Substage 4-8: Develop Deployment Diagrams ...6-45

DSSA Substage 4-9: Review and Iterate..6-45

DSSA STAGE 5—IDENTIFY REUSABLE ARTIFACTS...6-46

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts6-46

DSSA Substage 5-2: Develop Each Module..6-46

DSSA Substage 5-3: Requirements, Verification, and Testing................................6-46

DSSA Substage 5-4: Review and Iterate..6-51

Chapter 7 Conclusion ..7-1

Bibliography

Appendix A ASAC EA POC As-Run Test Procedures

Appendix B Abbreviations

FIGURES

Figure 1-1. NASA’s Research Objective ...1-2

Figure 1-2. ASAC Process ...1-3

Figure 1-3. Components of the Integrated Aviation System..1-4

Figure 2-1. ASAC System Components...2-1

Figure 3-1. ASAC Model Links ...3-3

Figure 4-1. CRC Card—Front View ..4-3

viii

Figure 4-2. CRC Card—Back View...4-3

Figure 4-3. CRC Card Process ...4-4

Figure 5-1. POC Context Diagram...5-1

Figure 5-2. POC Use Case Diagram ..5-12

Figure 5-3. Building an Analysis Sequence Diagram ..5-13

Figure 5-4. Building an Analysis Collaboration Diagram..5-13

Figure 5-5. Building a Model Sequence Diagram..5-14

Figure 5-6. Building a Model Collaboration Diagram ...5-15

Figure 5-7. Building a DataRelationship Between Two DataTransformers Sequence
Diagram..5-16

Figure 5-8. Building a DataRelationship Between Two DataTransformers
Collaboration Diagram...5-17

Figure 5-9. Running the Analysis Sequence Diagram ...5-18

Figure 5-10. Running The Analysis Collaboration Diagram ...5-19

Figure 5-11. Package Diagram...5-21

Figure 5-12. Subject Observer Class Diagram...5-22

Figure 5-13. Specification Package Class Diagram ...5-24

Figure 5-14. Transformer Class Diagram...5-30

Figure 5-15. Data Element Class Diagram...5-34

Figure 5-16. Threads Class Diagram..5-39

Figure 5-17. Utility Class Diagram ..5-40

Figure 5-18. Application Class Diagram..5-41

Figure 5-19. Analysis Client Class Diagram..5-45

Figure 5-20. Model Server Class Diagram...5-47

Figure 5-21. Analysis State Diagram ...5-49

Figure 5-22. Model State Diagram...5-50

Figure 5-23. DataRelationship State Diagram ...5-51

Figure 5-24. DataElementSet State Diagram ...5-52

Figure 5-25. DataElement State Diagram ..5-53

Figure 5-26. POC Deployment Diagram..5-54

Figure 5-27. ASAC EA Proof of Concept Development Environment5-58

Figure 5-28. Proof of Concept Implementation ...5-62

Figure 6-1. Beta Version Context Diagram..6-1

Contents

ix

Figure 6-2. Performing a DataRelationship Sequence Diagram ..6-5

Figure 6-3. Performing a DataRelationship Collaboration Diagram......................................6-5

Figure 6-4. Beta Version Package Diagram ...6-7

Figure 6-5. DataTransformer Class Diagram ...6-9

Figure 6-6. Threads Class Diagram..6-12

Figure 6-7. Utility Package Class Diagram..6-13

Figure 6-8. Analysis Server Class Diagram ...6-15

Figure 6-9. Proof of Concept Deployment Diagram ..6-18

Figure 6-10. Login Sequence Diagram...6-20

Figure 6-11. Login Collaboration Diagram..6-20

Figure 6-12. Loading an Analysis Sequence Diagram ...6-21

Figure 6-13. Loading an Analysis Collaboration Diagram ..6-21

Figure 6-14. Running an Analysis Sequence Diagram...6-22

Figure 6-15. Running an Analysis Collaboration Diagram..6-22

Figure 6-16. ASAC EA Client Package Diagram ..6-23

Figure 6-17. DataElement Package Class Diagram ...6-24

Figure 6-18. Link Package Diagram...6-28

Figure 6-19. Server Package Diagram..6-31

Figure 6-20. Model Package Diagram..6-34

Figure 6-21. Tree Package Diagram...6-38

Figure 6-22. Desktop Package Diagram...6-41

Figure 6-23. Frame Package Diagram..6-44

TABLES

Table 2-1. Proposed Development Schedule for the ASAC EA..2-2

Table 3-1. Contents of ASAC Model Repositories..3-1

Table 4-1. DSSA Stages...4-1

Table 4-2. Unified Modeling Language Diagram Definitions ...4-2

Table 5-1. Properties and Methods for Subject Class ..5-22

Table 5-2. Properties and Methods for Observer Class..5-23

Table 5-3. Properties and Methods for DataStorage Class ..5-25

x

Table 5-4. Properties and Methods for Specification Class ...5-26

Table 5-5. Properties and Methods for Scanner Class ...5-27

Table 5-6. Properties and Methods for TransformerSpec Class ..5-28

Table 5-7. Properties and Methods for ModelSpec Class..5-29

Table 5-8. Properties and Methods for AnalysisSpec Class...5-29

Table 5-9. Properties and Methods for DataTransformer Class...5-31

Table 5-10. Properties and Methods for Analysis Class ..5-32

Table 5-11. Properties and Methods for Model Class..5-32

Table 5-12. Properties and Methods for DataRelationship Class ..5-33

Table 5-13. Properties and Methods for DataElementSet Class ..5-35

Table 5-14. Properties and Methods for DataElement Class ...5-36

Table 5-15. Properties and Methods for DataElementIterator Class....................................5-38

Table 5-16. Properties and Methods for Thread Class...5-39

Table 5-17. Properties and Methods for Mutex Class..5-40

Table 5-18. Properties and Methods for Application Class ...5-42

Table 5-19. Properties and Methods for Log Class..5-43

Table 5-20. Properties and Methods for CorbaClient Class...5-44

Table 5-21. Properties and Methods for CorbaServer Class ..5-45

Table 5-22. Properties and Methods for AnalysisClient Class ..5-46

Table 5-23. Proof of Concept Model Descriptions ..5-62

Table 5-24. ASAC EA Proof of Concept Requirements and Test Procedures5-63

Table 5-25. Summary of the ASAC EA Proof of Concept Test Results..............................5-64

Table 6-1. Properties and Methods for DataTransformer Class...6-10

Table 6-2. Properties and Methods for DataRelationship Class ..6-11

Table 6-3. Properties and Methods for Breakpoint Class ..6-11

Table 6-4. Properties and Methods for EventMutex Class ..6-13

Table 6-5. Properties and Methods for ConversionUtils Class..6-14

Table 6-6. Properties and Methods for AnalysisServer Class..6-16

Table 6-7. Properties and Methods for AnalysisServer_i Class...6-16

Table 6-8. Properties and Methods for AnalysisObserver Class..6-17

Table 6-9. Properties and Methods for DataElementSet Class ..6-25

Table 6-10. Properties and Methods for DataElement Class ...6-26

Contents

xi

Table 6-11. Properties and Methods for LinkSet Class..6-28

Table 6-12. Properties and Methods for Link Class...6-29

Table 6-13. Properties and Methods for LinkCanvas Class...6-30

Table 6-14. Properties and Methods for Orb Class..6-31

Table 6-15. Properties and Methods for Client Class ..6-33

Table 6-16. Properties and Methods for ModelSet Class...6-35

Table 6-17. Properties and Methods for Model Class..6-35

Table 6-18. Properties and Methods for Analysis Class ..6-37

Table 6-19. Properties and Methods for AnalysisManager Class ..6-39

Table 6-20. Properties and Methods for AnalysisNode Class..6-39

Table 6-21. Properties and Methods for Access Class...6-40

Table 6-22. Properties and Methods for AnalysisDesktop Class...6-42

Table 6-23. Properties and Methods for DataElementSet Class ..6-42

Table 6-24. Properties and Methods for MainFrame Class..6-44

1-1

Chapter 1
Introduction

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION’S
ROLE IN PROMOTING AVIATION TECHNOLOGY

The United States has long been the world’s leader in aviation technology for both
civil and military aircraft. During the past several decades, U.S. firms have trans-
formed this position of technological leadership into a thriving industry with large
domestic and international sales of aircraft and related products.

Despite the industry’s historic record of success, the difficult business environ-
ment of the past several years has stimulated concerns about whether the
U.S. aeronautics industry will maintain its worldwide leadership position. In-
creased competition, both technological and financial, from European and other
non-U.S. aircraft manufacturers has reduced the global market share of U.S. pro-
ducers of large civil transport aircraft and cut the number of U.S. airframe manu-
facturers to only one. Order cancellations and stretch-outs of deliveries by airlines,
forthcoming noise abatement requirements, and environmental concerns create
additional challenges for U.S. producers and purchasers of aircraft.

The primary role of the National Aeronautics and Space Administration (NASA)
in supporting civil aviation is to develop technologies that improve the overall
performance of the integrated air transportation system, making air travel safer
and more efficient, as well as contributing to the economic welfare of the United
States. NASA conducts much of the basic and early applied research that creates
the advanced technology introduced into the air transportation system. Through its
technology research program, NASA aims to maintain and improve the leadership
role in aviation technology and air transportation held by the United States for the
last half century.

The principal NASA program supporting subsonic transportation is the Advanced
Subsonic Technology (AST) program, managed by the Subsonic Transportation
Division, Office of Aeronautics, NASA Headquarters. In cooperation with the
Federal Aviation Administration (FAA) and the U.S. aeronautics industry, the
AST program develops high-payoff technologies that support the development of
a safe, environmentally acceptable, and highly productive global air transportation
system. NASA measures the long-term success of its AST program by how well it
contributes to an increased market share for U.S. civil aircraft and aircraft compo-
nent producers and the increased effectiveness and capacity of the national air
transportation system.

1-2

NASA’S RESEARCH OBJECTIVE

To meet its objective of assisting the U.S. aviation industry with the technological
challenges of the future, NASA must identify research areas that have the greatest
potential for improving the operation of the air transportation system. Therefore,
NASA seeks to develop the ability to evaluate the potential impact of various ad-
vanced technologies. By thoroughly understanding the economic impact of ad-
vanced aviation technologies and by evaluating the use of new technologies in the
integrated aviation system, NASA aims to balance its aeronautical research pro-
gram and help speed the introduction of high-leverage technologies. Figure 1-1
illustrates NASA’s research objective.

Figure 1-1. NASA’s Research Objective

NASA

Advanced Subsonic Technology
program

Technology integration element

Aviation System Analysis Capability

Develop high-payoff technologies to support a
safe, environmentally acceptable, and highly
productive global air transportation system

Ensure that the technologies NASA develops are
timely and consistent with other developments in
the aviation system

Provide a capability to evaluate the potential
impacts of advanced technologies on the U.S.
economy

U.S. aeronautics
industry

FAA

GENESIS OF THE AVIATION SYSTEM ANALYSIS

CAPABILITY

Technology integration is the element of the AST program designed to ensure that
the technologies NASA develops are timely and consistent with other develop-
ments in the aviation system. Developing an Aviation System Analysis Capability
(ASAC) is one of the objectives of the technology integration element. With this
analytical capability, NASA and other organizations in the aviation community
can better evaluate the potential economic impacts of advanced technologies.

ASAC is envisioned primarily as a process for understanding and evaluating the
impact of advanced aviation technologies on the U.S. economy. ASAC consists of
a diverse collection of models, databases, analysts, and individuals from the pub-
lic and private sectors brought together to work on issues of common interest to

Introduction

1-3

organizations within the aviation community. ASAC will also be a resource avail-
able to those same organizations to perform analyses; provide information; and
assist scientists, engineers, analysts, and program managers in their daily work.
ASAC will provide this assistance through information system resources, models,
and analytical expertise, and conducting and organizing large-scale studies of the
aviation system and advanced technologies. Figure 1-2 displays this concept.

Figure 1-2. ASAC Process

Inputs: Outputs:

Databases

Tools and models

Knowledge and

analytical methods

Policy studies

Cost-benefit analyses

Communications and
consensus building

ASAC process

GOALS OF THE ASAC PROJECT: IDENTIFY AND

EVALUATE PROMISING TECHNOLOGIES

Developing credible evaluations of the economic and technological impact of ad-
vanced aviation technologies on the integrated aviation system is the principal
objective of ASAC. These evaluations will then be used to help NASA program
managers select the most beneficial mix of technologies for NASA investment,
both in broad areas, such as propulsion or navigation systems, and in more spe-
cific projects within the broader categories. Generally, engineering analyses of this
kind require multidisciplinary expertise, use several models of different compo-
nents and technologies, and consider multiple economic outcomes and techno-
logical alternatives. These types of analyses are most effective if they include
information and inputs from organizations and analysts from different parts of the
aviation community. In this way, the studies incorporate the expertise of people
around the United States and build acceptance from the start of the research effort.

In addition to identifying broad directions for investments in technology, the pro-
gram must also help researchers at NASA and elsewhere evaluate the economic
potential of alternative technologies and systems. By better informing engineers
about potential markets for technologies and data on how the current system
works, ASAC will help NASA engineers incorporate their customers’ needs more
easily into their routine work. These types of problems most likely involve inves-
tigating technical designs for specific aircraft or subsystems that can readily re-
place existing equipment without requiring significant changes to other aviation
components. With such information, researchers could more easily evaluate the
utility of alternative designs and quickly estimate the value of their design con-
cepts. Analysts from industry, government, and universities would also use ASAC
in this way.

1-4

APPROACH TO ANALYZING THE INTEGRATED

AVIATION SYSTEM

The most useful aviation technologies are not necessarily the most technically ad-
vanced. Rather, NASA and industry must invest in the technologies that have the
most promising payoffs—those that clearly demonstrate a capacity for economi-
cally viable performance enhancements—from the perspective of those organiza-
tions that will purchase and operate the technologies.

Because new aviation technologies are introduced into a complex system, the po-
tential impact of any proposed technology must be analyzed from a system-wide
perspective. Otherwise, the potential impact may be overestimated or underesti-
mated because of the unexamined interdependencies with other elements of the
aviation system. Figure 1-3 shows the components of the integrated aviation system.

Figure 1-3. Components of the Integrated Aviation System

A irlines

A irspace
system

S a fe tyE nv ironm ent

A ircraft
In tegra ted

avia tion
system

In summary, with the ASAC, users can develop credible evaluations of the eco-
nomic and technological impact of advanced aviation technologies on all compo-
nents of the integrated aviation system.

DOCUMENT OVERVIEW

This technical document describes the system development of the ASAC Execu-
tive Assistant (EA). The document builds upon the work presented in the NASA
Contractor Reports #201681, ASAC Executive Assistant Architecture Description
Summary, Eileen Roberts and James A. Villani, April 1997, and #207679, Avia-
tion System Analysis Capability Executive Assistant Design, Eileen Roberts and
James Villani, et. al., May 1998, and it is composed of the following chapters:

u Chapter 1—Introduction

u Chapter 2—Components of the Aviation System Analysis Capability

Introduction

1-5

u Chapter 3—ASAC Analyses

u Chapter 4—Design and Development Methodology

u Chapter 5—ASAC EA Proof of Concept

u Chapter 6—ASAC EA Beta Version

u Chapter 7—Conclusion.

In Chapters 1 through 3, the genesis and role of the ASAC system is described.
We discuss the objectives of the ASAC system and provide an overview of com-
ponents and models within the ASAC system.

The Design and Development Methodology chapter discusses the Domain-
Specific Software Architecture (DSSA), and the DSSA approach to developing a
system design. The chapter also describes the design tools used for the ASAC EA
system.

The next two chapters, ASAC EA Proof of Concept and ASAC EA Beta Version,
describe the requirements and goals of the ASAC EA system and includes the
ASAC EA system design. The chapters also describe the development environ-
ment and process, the verification, and the testing. We address:

u DSSA Stage 4—Develop Domain Models

u DSSA Stage 5—Identify Reusable Artifacts.

DSSA stages 1 through 3 and part of stage 4 are detailed in the documents refer-
enced above.

This document has a bibliography and two appendices:

u Appendix A—ASAC EA POC As-Run Test Procedures

u Appendix B—Abbreviations.

2-1

Chapter 2
Components of the ASAC

OVERVIEW

ASAC is a diverse collection of models, databases, analysts, and individuals from
the public and private sectors brought together to work on the issues of common
interest to organizations within the aviation community.

Figure 2-1 shows the major system components of ASAC.

Figure Chapter 2 -1. ASAC System Components

Most ASAC system components exist; others are under development. Two ASAC
components, Document Server and the Related Web Sites are available to the
general public. All other ASAC components are available on a restricted basis.

Aviat ion System
Analysis Capabil i ty

Model Reposi tor ies
(Local and
Remote)

Data Repositor ies
(Local and
Remote)

Execut ive
Assistant

(First Generation)
Document Server

Quick Response
System

Related Web Si tes

Charts and
Graphs

Spreadsheets
Predef ined
Analyses

Query ServerReport Server Model Server
Document

Server

2-2

Information about the ASAC Executive Assistant (First Generation) can be found
in Aviation System Analysis Capability Executive Assistant Design, referenced in
Chapter 1. Information about the Quick Response System (QRS) and other ASAC
components can be found in the NASA Contractor Report #201680, Aviation
System Analysis Capability Quick Response System Report for Fiscal Year 1997,
Eileen Roberts, James A. Villani and Paul Ritter, March 1998.

ASAC EXECUTIVE ASSISTANT

With the ASAC EA, researchers at NASA and elsewhere can quickly evaluate the
economic potential of alternative technologies and systems. By providing inputs
to and linking the many models and data that the ASAC system will comprise, the
EA will provide an intelligent interface with which the user can perform detailed
analyses. The ASAC EA Proof of Concept (POC) and Beta version development
is the focus of this document.

Table Chapter 2 -1 outlines the proposed development schedule for the EA.

Table Chapter 2 -1. Proposed Development Schedule for the ASAC EA

Item Year Status

Define ASAC EA requirements 1995 Complete
Define the ASAC EA 1996 Complete
Develop the ASAC EA architecture 1996 Complete
Develop the Model Integration Prototype (First Generation ASAC) 1996–1997 Complete
Design and develop the ASAC EA Proof of Concept 1997–1998 Complete
Design, develop, and deploy the ASAC EA Beta version 1998 Ongoing

Design, develop, and deploy the ASAC EA version 1.0 1999 __

Refine the ASAC EA 1999 __

3-1

Chapter 3
ASAC Analyses

ASAC MODELS

The ASAC Model Integration Prototype (First Generation ASAC) was fielded in
March 1997. It demonstrated the integration of six First Generation ASAC mod-
els, and was the first step in providing a robust, fully functional, ASAC EA.
NASA and others used the ASAC Model Integration Prototype (First Generation
ASAC) to perform selected economic analysis of aircraft technology and air traf-
fic management improvements.

Additional models have been added to the ASAC Model Integration Prototype
(First Generation ASAC) since its debut. It currently comprises a subset of the
complete ASAC model network.

The ASAC Model Integration Prototype (First Generation ASAC) is available to
authorized ASAC users (password protected). Users employ a World Wide Web
(WWW) browser to access the system.

At present, seven models plus variants of two of the models, are in the ASAC
Model Repositories. The models are listed in Table 3-1. New models will be
added to the repositories as they are developed.

Table Chapter 3 -1. Contents of ASAC Model Repositories

Model
Operating
System Comment

ASAC Air Carrier Investment Model HP-UX Available via a WWW interface

ASAC Air Carrier Network Cost Model HP-UX Available via a WWW interface

ASAC Airport Capacity Model—Atlanta,
Dallas-Fort Worth, Detroit, Los Angeles,
New York La Guardia

HP-UX Available via a WWW interface

ASAC Airport Delay Model— Atlanta,
Dallas-Fort Worth, Detroit, Los Angeles,
New York La Guardia

HP-UX Available via a WWW interface

ASAC Flight Segment Cost Model
(Cost Translator)

HP-UX Available via a WWW interface

ASAC Flight Segment Cost Model
(Mission Generator)

HP-UX Available via a WWW interface

ASAC Noise Impact Model Windows NT Available via a WWW interface

3-2

SCHEMATIC OF ASAC MODELS

ASAC models are grouped into the following three analytical areas:

u 1.0 Aircraft and System Technologies

u 2.0 FAA Air Traffic Management

u 3.0 Environment.

Each model has a unique number. The number designates the model’s analytical
area, e.g., all model numbers that begin with a 2 belong to the FAA Air Traffic
Management (ATM) analytical area. The models outlined in bold are available in
the First Generation ASAC.

ASAC models can be combined to form analyses. For example, an analysis might
comprise the following models:

2.1 ASAC Airport Capacity Model à

2.2 ASAC Airport Delay Model à

1.5 ASAC Flight Segment Cost Model—Cost Translator à

1.7 ASAC Air Carrier Investment Model.

Model links for each of the three analytical areas are shown in Figures 3-1.

Aviation System Analysis Capability Models

3-3

Figure Chapter 3 -1. ASAC Model Links

1.5 ASAC Fl ight
Segment Cost
Model - - Cost

Translator

1.0 Aircraf t and
System

Technolog ies

1.1 ASAC Air
Cargo Investment

Mode l

1.2 This model was
combined wi th 1.3

1.3 ASAC Regiona l
and Commuter A i r
Carr ier Investment

Mode l

1.4 ASAC Fl ight
Segment Cost

Model - - Miss ion
Generator

1.6 ASAC Air
Carr ier Network

Cost Model

1.7 ASAC Air
Carr ier Investment

Mode l

1 .8 WebACSYNT
or FLOPS

1.9 NARIM

2.0 FAA Air Traf f ic
Management

2.1 ASAC Airpor t
Capaci ty Model

2.2 ASAC Airpor t
De lay Model

2.4 LMI Network
Model or

Approx imate Network
Delay Model

2.3 Aircraf t /ATC
Funct ional

Analys is Model

2 .7 ASAC System
Safety Tolerance
Analys is Model

2.5 ASAC Air
Carr ier Operat ions

Mode l

2.6 ASAC Air
Carr ier Cost-
Benef i t Model

3.0 Envi ronment
3.1 ASAC Noise

Impact Model

Analyses Using ASAC Models

The above represented models can be used either alone or in combination to ana-
lyze specific AST program elements. A future NASA contractor report, Aviation
System Analysis Capability Executive Assistant Analyses, will describe specific
analyses that may be incorporated into the ASAC EA system.

4-1

Chapter 4
Design and Development Methodology

As discussed in the NASA Contractor Reports #201681, ASAC Executive Assis-
tant Architecture Description Summary, and #207679, Aviation System Analysis
Capability Executive Assistant Design, the DSSA is being used as a methodology
for the ASAC EA system.

THE DSSA APPROACH

A domain engineering process is used to generate a DSSA. The goal of the proc-
ess is to map user needs into system and software requirements that, based on a
set of implementation constraints, eventually define a DSSA.

There are five stages in the DSSA domain engineering process. Each stage is fur-
ther divided into steps or substages. The process is concurrent, recursive, and it-
erative. Therefore, completion requires several passes through each stage. The
five stages in the domain engineering process are described in Table 4-1.

Table Chapter 4 -1. DSSA Stages

Stage Title Description ASAC EA phase

1 Define the scope of the
domain

Definition of what can be accom-
plished with emphasis on user needs

Architecture

2 Define/refine domain-
specific elements

Similar to requirements analysis with
emphasis on the problem space

Architecture

3 Define/refine domain-
specific design and
implementation constraints

Similar to requirements analysis with
emphasis on the solution space

Architecture

4 Develop domain models
and architectures

Similar to high-level design with
emphasis on defining module and
model interfaces and semantics

Architecture and
design

5 Produce and gather reus-
able work products

Implementation and collection of
reusable artifacts such as code and
documentation

Design and
development

DSSA stages 1, 2, 3, 4, and 5 (partial) were defined in the ASAC Executive Assis-
tant Architecture Description Summary and Aviation System Analysis Capability
Executive Assistant Design. An iteration of DSSA stage 4 and the remainder of
DSSA stage 5 are addressed in this document.

4-2

DSSA DESIGN TOOLS

Unified Modeling Language

Object-oriented design (OOD) is a development approach based on the organiza-
tion of entities that have structure and behavior. It promotes the construction of
well-defined systems and facilitates reuse and ease of modification. The Object
Modeling Technique (OMT), used to develop the ASAC Executive Assistant Ar-
chitecture Description Summary, was one method used to cover the system devel-
opment process from the conceptualization phase through implementation. The
author of OMT has collaborated with the authors of other OOD methodologies,
namely Booch and Jacobson, to create the Unified Modeling Language (UML).
UML is the successor to the past object-oriented design notations and has been
proposed as a standard to the Object Management Group (OMG). UML notation
is used to document the design. The Rational Rose visual modeling tool is used to
automate this process.

A brief description of UML diagrams is found in Table 4-2.

Table Chapter 4 -2. Unified Modeling Language Diagram Definitions

Diagram Description

Use case A snapshot of one aspect of a system. The sum of all use cases is the external
picture of a system.

Sequence An interaction diagram that models message passing behavior between objects.

Collaboration An interaction diagram that models message passing behavior between objects.

Package Shows a high-level picture of components (packaged classes) and the depend-
encies among them.

Class A description of the classes in a system and the interrelationships among them.

State Shows all possible states for an object and how the object’s state changes as a
result of events.

Deployment Shows the physical relationships among software and hardware components in
the delivered system.

Activity Is a flow chart of tasks or methods on a class.

Data flow A depiction of the relationships among functions, usually within the problem
domain.

The first seven diagrams are used to represent the ASAC EA design in this docu-
ment. The other two diagrams may be used in the future (they are not required at
this point).

The methodology associated with the UML notation is called Objectory, and is
still being developed. Like UML notation, Objectory brings together the best as-
pects of the OMT, Booch, and OOSE (Jacobson) methodologies.

Design Methodology

4-3

Class-Responsibility-Collaboration Card Technique

A technique called Class-Responsibility-Collaboration (CRC) Card is used to de-
fine the classes and class collaborations. CRC Card technique facilitates the proc-
ess of discovering the real-world objects that make up a system and its public
interfaces.

CRC cards are index cards that record

u suggested classes,

u their responsibilities,

ä what the classes know about themselves (knowledge responsibility)

ä what the classes do (behavior responsibility), and

u their relationship to other classes (collaboration).

CRC cards can optionally record

u class definitions and

u class attributes.

The front and optional back views of a CRC card are shown in Figures 4-1 and
4-2, respectively.

Figure Chapter 4 -1. CRC Card—Front View

Responsibi l i ty 1 Collaborative Classes

Responsibi l i ty 2 Collaborative Classes

Responsibi l i ty 3 Collaborative Classes

Class name
 Superclass:
 Subclass:

Figure Chapter 4 -2. CRC Card—Back View

Defini t ion:

Att r ibutes:

4-4

The CRC cards are used to role-play system scenarios. A person represents a class
and responds to a request from another class based upon what is written on his or
her CRC card. The role-play enables one to

u validate classes,

u ensure the identification of what the class knows and what the class does,
and

u ensure all class hierarchies are identified.

The CRC card process is depicted in Figure Chapter 4 -3.

Figure Chapter 4 -3. CRC Card Process

Create l ist of
scenar ios f rom

use cases

Ass ign CRC cards
(class roles) to
team members

Play out scenar ios

Correc t CRC
cards and revise

scenar ios

Perform f inal
scenar ios

Design Patterns

Design patterns record experience in designing object-oriented software by nam-
ing, explaining, and evaluating important and recurring designs in object-oriented
systems. An example of a design pattern is the Observer pattern, defined by
Gamma, et al., as “a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.”
The Observer, Flyweight, and Strategy design patterns were used in developing
the ASAC EA design.

Design Methodology

4-5

FURTHER READING

For more information about UML CRC cards and design patterns, see the fol-
lowing references:

[1] Fowler, Martin and Kendall Scott, “UML Distilled—Applying the Standard
Object Modeling Language,” Addison-Wesley, 1997.

[2] Rational Software Corporation UML Resource Center, “UML Document Set
Version 1.1,” September 1997, http://www.rational.com/uml/references/.

[3] Bellin, David and Susan Suchman Simone, “The CRC Card Book,”
Addison-Wesley, 1997.

[4] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, “Design
Patterns—Elements of Reusable Object-Oriented Software,” Addison-
Wesley, 1995.

5-1

Chapter 5
ASAC EA Proof Of Concept

The DSSA approach was tailored to meet the needs of the ASAC develop-
ment effort. The next two sections discuss each of the applicable areas of DSSA
stages 4 and 5.

A piece of the architecture, referred to as the ASAC EA POC, was developed to
prove the concept of the ASAC EA system. Figure 5-1 shows the context diagram
of the entire system. The POC part of the system is shown by the highlighted box.

This section is built upon the ASAC Executive Assistant Architecture Description
Summary and Aviation System Analysis Capability Executive Assistant Design,
which covered DSSA stages 1, 2, 3, 4, and 5 (partial). The section will concen-
trate on the design, development, and acceptance of the POC.

The POC was successfully demonstrated to and accepted by NASA in March 1998.

Figure 5-1. POC Context Diagram

M O D E L
A P P LIC A T IO NM O D E L

A P P LIC A T IO N

M O D E L
A P P LIC A T IO NM O D E L

A P P LIC A T IO N

A N A LY S T

U S E R
A P P LIC A T IO N

A N A LY S IS
A P P LIC A T IO N

S Y S T E M
A D M IN IS T RA T O R

M O D E L
A P P LIC A T IO N

D R IV E R
A P P LIC A T IO N

M O D E L
IN TE G R A T O R

D ata

D ata
A nalysis H istory

D ocum en t

C ata logs
T em plates

M ode ls

M ode ls

C A T A LO G
R E P O S IT O R Y

T E M P LA T E
R E P O S IT O R Y

A nalysis T em plates and
D ocum en ts, H istory
D ocum en ts

Executive Ass is tan t

T E M P LA T E
D E V E LO P E R

T em plates

S ystem U se

D E P E N DE N CY
R E P O S IT O R Y

.

A S A C E xecutive
A ss istan t P O C

5-2

ASAC EA REQUIREMENTS

Sixty-two requirements have been defined for the ASAC EA. Fifteen of the require-
ments applied to the ASAC EA POC and were tested as a part of ASAC EA POC
development. These requirements are in bold. The ASAC EA POC requirements
plus the requirements in normal text apply to the ASAC EA Beta version. Ten of the
sixty-two requirements are in italics. They will be implemented for ASAC EA ver-
sion 1.0.

The requirements listed in the following sections are grouped into nine areas.
They are:

u Analysis Execution

u Analysis Management

u Analysis Specification

u Distributed Computing

u Error Handling

u General

u Model Specification

u Optimization

u Security.

Analysis Execution

u AE0001 The Analyst shall have the capability to execute an analysis if an
off-line administrator has granted the appropriate permissions.

u AE0002 The Analyst shall have the capability to view and modify model
input data at user-defined intermediate steps in the analysis. Any modifi-
cations to the model inputs shall be logged.
Note: In essence, provide the user with the capability to visually inspect
and change data being transferred between models during the execution of
an analysis.

u AE0003 When an analysis is executed, the names of the models that are
executed, as part of that analysis, will be logged to a log file.

u AE0004 When an analysis is executed, its inputs and outputs will be
logged.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-3

u AE0005 When a model is executed, its inputs and outputs will be logged.

u AE0006 Upon completion of the execution of an analysis, the results will
be presented to the user if the user is logged into the system.

u AE0007 Analysis and Model outputs shall be viewable in both raw and
converted format.

u AE0008 ASAC will provide a message to the user indicating a rough esti-
mated time required to execute an analysis. Note: This will be a very rough
estimate, as there are currently no plans to perform an interrogation of net-
work and system(s) loading at the time of execution to provide a better esti-
mate, not to mention the affect of data set size on model execution time.

u AE0009 ASAC EA shall support the execution of analyses in the “back-
ground” after users have logged off of the system.

u AE0010 The ASAC EA shall optionally mail a notification of analysis com-
pletion or suspension to the user, if the user is not logged into the system.

u AE0011 Users shall be able to cancel the execution of an analysis at any
user pre-defined intermediate step.

u AE0012 Users shall be able to log back in and check the progress of, or can-
cel “active” analyses for which they have the appropriate permissions. When
an analysis finishes, it shall remain “active” until the users views its outputs.

u AE0013 Analyses can be restarted from the beginning after their execution
has finished or been canceled.

u AE0014 Users shall be able to set breakpoints on any data relationship.
Breakpoints shall be settable before or after data conversion occurs in the
data relationship.

u AE0015 Users shall be able to set preferences regarding e-mail delivery of var-
ious status messages that can get sent when they are not logged into the system.

Analysis Management

u AM0001 The capability shall be provided to create an analysis by using
off-line tools.

u AM0002 The Analyst shall have the capability to view an existing analysis
if an off-line administrator has granted the appropriate permissions.

u AM0003 The capability shall be provided to update an analysis by using
off-line tools.

5-4

u AM0004 The Analyst shall have the capability to delete an analysis if an
off-line administrator has granted the appropriate permissions.

u AM0005 The Analyst shall have the capability to copy an analysis if an
off-line administrator has granted the appropriate permissions.

u AM0006 The capability shall be provided to store an analysis to the server
for private or public use by using off-line tools.

u AM0007 The Analyst shall have the capability to store the results of an
analysis to the server for private or public use if an off-line administrator
has granted the appropriate permissions.

Analysis Specification

u AS0001 An analysis may contain one or more models or analyses.

u AS0002 Analyses may have default input values.

u AS0003 Default analysis input values may be overridden by the user.

Distributed Computing

u DC0001 ASAC will accommodate operation of its models at remote sites.

u DC0002 ASAC EA shall provide the capability to allow analysts to run
more than one analysis concurrently.

u DC0003 ASAC EA shall support the concurrent execution of more than
one instance of the same analysis on the same or different machines.

u DC0004 ASAC EA shall support the concurrent execution of more than
one instance of the same model on the same or different machines.

u DC0005 The physical location of the models shall be transparent to the
ASAC EA.

u DC0006 ASAC EA shall support a distributed application server model
which allows multiple clients and servers to be located on different physi-
cal host machines.

u DC0007 ASAC EA shall allow users to run more than one analysis
simultaneously.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-5

Error Handling

u EH0001 The user shall be notified if the web server is not available (han-
dled by the browser)

u EH0002 The user shall be notified if the analysis server is not available.

u EH0003 The user shall be notified if a model server is not available.

u EH0004 The user shall be notified if the analysis server encounters a fail-
ure during analysis execution.

u EH0005 The user shall be notified if a model server encounters a failure
during model execution.

u EH0006 The user shall be notified if an invalid data type or value for
analysis/model input is specified.

u EH0007 The user shall be notified if the database is not available or if a
database access error is encountered.

General

u GE0001 The user application will have an intuitive graphical user inter-
face that adheres to the IBM CUA standards.

Model Specification

u MS0001 Models shall have valid default values upon initialization (when
added to an analysis).

u MS0002 An off-line administrator shall have the capability to add new
models to the system by:

ä Developing (or adding developed) models that match a well-defined
interface.

ä Creating model specifications in a to be determined database that
specifies the model parameters. e.g. inputs, outputs, and description.

ä Writing and adding model wrappers that translate/map the well-
defined model interface data element sets (DESs) to the model-specific
interface for the model being added to the system (i.e., translators from
DESs to model inputs and translators from model outputs to DESs).

5-6

u MS0003 Models may have default input values.

u MS0004 Default Model input values may be overridden by the user.

u MS0005 EA model inputs may be an ASCII file.

Optimization

 Note: Optimization requirements will not be implemented for the beta, but
will be designed and the necessary hooks will be implemented to support
implementing it at some point in the future if required.

u OP0001 The optimizer shall determine the number of times an analysis
needs to run in order to achieve the specified goal.

u OP0002 The EA shall provide an optimizing tool that allows users to
specify a goal (e.g., minimize analysis output X) and let the system vary a
given set of inputs to achieve the goal.

u OP0003 When an analysis is rerun, the number of models that need to be
rerun will be minimized based on the inputs that have changed. For exam-
ple, given five models A, B, C, D, and E, where A = f(B + C) and
B = f(D + E), when an input of E is changed, only B will be rerun (C and
D will not be rerun).

u OP0004 Optimization can only take place on an analysis, not an individual
model or arbitrary set of models.

u OP0005 The optimizer shall create a log containing convergence history
and other relevant information which can be presented to the user for review.

u OP0006 The ASAC EA shall support running an analysis a specified
number of times and using a different set of pre-specified inputs for each
iteration (i.e., table generation).

Security

u SE0001 An off-line system administrator will define the level of authori-
zation for analyses and scenarios on a per-user or per-group basis.

u SE0002 The owning user shall have permissions to view and execute an
analysis if an off-line administrator has granted the appropriate permissions.

u SE0003 The owning user shall have the permission to grant or revoke
view, execute, delete permissions to other users, provide that the owning
user has “View,” “Execute”, and “Delete” permissions, respectively.

u SE0004 The owning user shall be able to transfer ownership to other users.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-7

u SE0005 An off-line administrator shall control user access to models.

u SE0006 Users must log into the system.

u SE0007 User authentication must be at least as secure as HTTP basic
authentication.

u SE0008 It shall be “difficult” for people to run ASAC EA models from
outside the ASAC EA system, i.e., there must be no backdoors which al-
low unauthorized people to run models.

u SE0009 Model servers shall be passed user authentication information so
that they can control access (authorization) to specified users or groups.

u SE0010 An off-line administrator shall be able to define groups of users
for authorization. Users can belong to multiple groups.

u SE0011 Scenarios will have “Read,” “Write,” and “Delete” permissions as-
sociated with them. Analyses will only have “Read “permissions. Anybody
able to read an analysis can create a scenario for that analysis and execute it.

POC GOALS

The ASAC EA POC was developed to address the high risk areas of the ASAC
EA system. The goals of the ASAC EA POC were to

u Demonstrate seamless integration of standalone models

u Output of models automatically feeds input of next model(s) in analysis

u Demonstrate integration of models on multiple machines

u Validate system design.

REVIEW AND ITERATE DSSA SUBSTAGE 2-8:
DEFINE ASSUMPTIONS

The assumptions defined in the design phase of the project and described in the
Aviation System Analysis Capability Executive Assistant Design still apply. In addi-
tion, the following assumptions were made during the implementation of the POC:

u An Analysis owns the models and relationships that it contains. When an
analysis is deleted, the models and relationships it contains are deleted as well.

5-8

u All the changeable inputs to a model can be represented as a set of named
data elements. Each data element implements a heterogeneous table, e.g.,
each column can be a different data type. This allows each data element to
represent a scalar value, an array, a record, or a complex table. Each input
to a model must fit into this form.

u Analyses will be created off-line, not through a GUI. Users will not be
able to create their own analyses.

u Analyses will specify default (fixed) values for all model variables and
will specify which values can be changed by the users, e.g, analysis vari-
ables. Although users can view the values of model variables, they cannot
modify them. Only analysis variables can be changed. This eliminates the
need for a custom user interface for each model.

u When checkpoints are implemented, only variables predetermined by the
analysis specification can have their values modified between analyses.

u Users cannot add or delete the models in an analysis. Users cannot add or
delete data relationships in an analysis.

REVIEW AND ITERATE DSSA SUBSTAGE 2-9:
DEFINE ISSUES

Issues remaining from the Aviation System Analysis Capability Executive Assis-
tant Design are as listed below. Answers have been provided where an issue has
been resolved:

u How does the EA system handle or detect non-termination of models?

 There are two conditions that could cause non-termination of a model and,
therefore, analysis deadlock. The first is the model completes but does not
return all necessary data for the model to be considered complete. This is
easily detected in the code. The second condition is the model never re-
turns but instead gets caught in an infinite loop caused by poor model de-
sign or implementation. This case is more difficult to detect, and methods
will be investigated during the next phase of development. All other non-
termination conditions should be detected and handled as errors.

u How is data passed among components? Pass the data or data file name?

 Data is passed directly between components to avoid having to depend on
multiple communication protocols, i.e., CORBA plus a file transfer protocol.

u Should multiple processes be spawned for the analysis application, or
should there be separate invocations of the program?

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-9

 For the ASAC EA POC, separate invocations of the Analysis application
exist. For the Beta version and full ASAC EA system, each analysis will be
a separate process (or thread) spawned by the analysis server application.

u What are the space constraints on user systems (maximum size for the user
application)?

 Space constraints will be examined during next phase of development.

u What is the target size of the analysis application?

The target size will be examined during next phase of development.

New issues have been identified during ASAC EA POC development. They are:

u Should customer proprietary models be hosted on LMI servers?

Customer proprietary models will not be hosted on LMI servers in order to
minimize the cost of implementing ASAC security and to maximize cus-
tomer protection. Customers will maintain and host proprietary models in
their respective organizations so the models will be subject to their internal
security protection. Interaction between ASAC and proprietary models
hosted on customer servers not collocated at LMI will be enabled via
file/database transfer from the customer to ASAC and return, and/or ap-
propriate customer legacy model wrapper and ORB software. Customer
models hosted on LMI servers will be protected to the same level of secu-
rity as all other models hosted on the LMI servers.

u In the absence of a currently available security solution, such as a CORBA
level 2 security service, is providing a completely secure environment in a
distributed system such as ASAC EA infeasible. What security should be
provided for the ASAC EA system?

The level of security for the ASAC EA system will be username and pass-
word passed over the network. This is the level of protection offered by
the majority of internet-based applications., i.e., telnet, ftp, http, and pop3.

u Is optimization at the analysis level (across models) necessary?

We will not implement multimodel optimization in the ASAC EA POC or
Beta version; however, we will not preclude optimization from being im-
plemented in the future (we will consider optimization in our high-level
design so future implementation will not be disruptive to the system).

u Do we use a database or some other mechanism (flat files) for storing
analysis and model specifications? If we use a database, is it relational,
OO, or a hybrid?

5-10

 Storage mechanisms will be examined during next phase of development.

u Given the name of the data transformer specification, how does the pro-
gram determine if it is a model specification or analysis specification
without detailed understanding of the differences between those two files?

 The specification identification will be examined during next phase of de-
velopment.

u When a model fails because of an error, how is the model’s parent analysis
notified? (How do we handle errors in a multithreaded environment?)

 Error notification will be examined during next phase of development.

DSSA STAGE 4—REFINE POC DOMAIN MODELS

Domain models that were developed in DSSA substages 4-3 to 4-8 of the domain-
engineering process and documented in the Aviation System Analysis Capability
Executive Assistant Design were refined during POC development. The domain
models that were refined are:

u 4-3 Use case diagrams

u 4-4 Interaction diagrams

ä Sequence diagrams

ä Collaboration diagrams

u 4-5 Package diagrams

u 4-6 Class diagrams

u 4-7 State diagrams

u 4-8 Deployment diagrams

Thirteen classes were defined and described during POC design. They are:

u Subject,

u Observer,

u DataTransformer,

u Analysis,

u AnalysisSpec,

u Model,

u ModelSpec,

u DataRelationship,

u DataRelationshipSpecification,

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-11

u DataElement,

u DataElementSet,

u DataConverter, and

u DataStorage.

A number of new classes were added during implementation of the POC. The
majority of the classes are infrastructure or utility classes, which help encapsulate
required functionality. Some classes were added to encapsulate and factor out
common functionality that existed in more than one previously defined class.

The new classes are:

u Log,

u Application,

u CorbaClient,

u CorbaServer,

u DataStorage,

u Specification,

u Scanner,

u TransformerSpec,

u ModelSpec,

u AnalysisSpec,

u Thread,

u Mutex,

u AnalysisClient,

u ModelWrapper,

u ModelWrapper_i,

u ModelServer,

u DataElementIterator,

u Evaluate.

5-12

These classes will be discussed in more detail throughout this chapter.

DSSA Substage 4-3: Develop Use Case Diagrams

Use Case diagrams are used to show a typical interaction between a user and the
system. The Use Case diagram for the POC is shown in Figure 5-2. It illustrates
that a user will be able to select an analysis, start an analysis, and obtain the re-
sults from the analysis.

Figure 5-2. POC Use Case Diagram

Run Analysis

Select Analysis

Analyst

Start Analysis

Return Results

DSSA Substage 4-4: Develop Interaction Diagrams

Interaction diagrams are diagrams that describe how groups of objects collaborate.
These diagrams usually capture the behavior of a single Use Case. The two types
of Interaction diagrams are sequential diagrams and collaboration diagrams. Se-
quential diagrams and Collaboration diagrams give the same temporal informa-
tion, but are shown in two different ways. Objects in a sequence diagram are
shown as a box with a dashed line below it that represents the objects lifeline.

Each message is represented by an arrow between two lifelines. Objects in a col-
laboration diagram are shown as icons and the message is represented by arrows
between two icons.

Interaction diagrams were developed for four areas. They are:

u Building an Analysis,

u Building a Model,

u Building a DataRelationship between two DataTransformers,

u Running an Analysis.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-13

BUILDING AN ANALYSIS

Figure 5-3. Building an Analysis Sequence Diagram

Analyst
Analysis Analysis Spec Data StorageRelationshipAnalysis Input & Output

createAnalysis(name) create

* getNextDataTransformer

* getNextDataRelationship

retrieve ()

* getNextInputDataElement

* getNextOutputDataElement

addDataElement

addDataElement

create

createDataTransformer

mInput.registerObserver

getTimeEstimate

Figure 5-4. Building an Analysis Collaboration Diagram

Analyst : Analyst

Analysis : EA_Analysis Analysis Spec : EA_AnalysisSpec

Data Storage : EA_DataStorage

Analysis Input & Output : EA_DataElementSet

Relationship : EA_DataRelationship

5: createDataTransformer

1: createAnalysis(name)

14:

2: create
4: * getNextDataTransformer
6: * getNextDataRelationship
8: * getNextInputDataElement

10: * getNextOutputDataElement
12: getTimeEstimate

9: addDataElement
11: addDataElement

13: mInput.registerObserver

7: create
3: retrieve ()

5-14

BUILDING A MODEL

Figure 5-5. Building a Model Sequence Diagram

Analysis Model Model Spec Model Input & Output Data Storage

createModel(name) create retrieve

* getNextInputDataElement

* getNextOutputDataElement

addDataElement

addDataElement

mInput.registerObserver

getModelName

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-15

Figure 5-6. Building a Model Collaboration Diagram

Analysis : EA_Analysis

Model : EA_ModelProxy Model Spec : EA_ModelSpec

Model Input & Output : EA_DataElementSet Data Storage : EA_DataStorage

1: createModel(name)

10:

5: addDataElement
7: addDataElement

9: mInput.registerObserver

2: create
4: * getNextInputDataElement

6: * getNextOutputDataElement
8: getModelName

3: retrieve ()

5-16

BUILDING A DATARELATIONSHIP BETWEEN TWO DATATRANSFORMERS

Figure 5-7. Building a DataRelationship Between Two
DataTransformers Sequence Diagram

Analysis Data Relationship DT1 : EA_Data
Transformer

Input DESDT2 : EA_Data
Transformer

create(DT1, DT2)
getParent ()

getParent ()

mInput = getOutput ()

mOutput = getInput ()

mInput = getInput

mOutput = getInput

[parents are same]

[else DT2.parent == DT1]

mOutput = getOutput

mInput = getOutput

[else DT1.parent == DT2]

mInput = getInput

mOutput = getOutput

[else DT1 == DT2]

mInput.registerObserver

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-17

Figure 5-8. Building a DataRelationship
Between Two DataTransformers Collaboration Diagram

Analysis : EA_Analysis

Data Relationship : EA_DataRelationship

DT1 : EA_DataTransformer

Input DES : EA_DataElementSet DT2 : EA_DataTransformer

1: create(DT1, DT2)

13: 2: getParent ()
4: mInput = getOutput ()
6: mInput = getInput ()

8: mInput = getOutput ()
10: mInput = getInput ()

3: getParent ()
5: mOutput = getInput ()
7: mOutput = getInput ()

9: mOutput = getOutput ()
11: mOutput = getOutput ()

12: mInput.registerObserver

5-18

RUNNING THE ANALYSIS

Figure 5-9. Running the Analysis Sequence Diagram

Analysis Models RelationshipsInput DataElementSets Output DataElementSetsMain

notifyChange

* setDataElement

evaluateState ()

* notifyChange

* setDataElement

evaluateState ()

* notifyChange

* setDataElement

evaluateState ()

run ()

* getState ()

[until state == READY]

* setDataElement

evaluateState ()

run ()

* notifyChange

* setDataElement

evaluateState ()

* notifyChange

* notifyChange

* setDataElement

evaluateState ()

Run Model #1
and set output.

Run Model #2
and set output.

Relationship
from Analysis
to M1 input.

Relationship
from M1 output
to M2 input.

Relationship
from M2 to the
Analysis output.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-19

Figure 5-10. Running The Analysis Collaboration Diagram

Analysis : EA_Analysis

Models : EA_DataTransformerRelationships : EA_DataRelationship

Input DataElementSets : EA_DataElementSet

Output DataElementSets : EA_DataElementSet

Main : EA_AnalysisClient

15: run ()
8: run ()

21: * getState ()

22:

9: * setData
10: evaluateState ()
16: * setDataElement
17: evaluateState ()

4: * notifyChange

12: * setData
13: evaluateState ()
5: * setDataElement
6: evaluateState ()

3: notifyChange

14: * notifyChange
7: * notifyChange

11: * notifyChange
18: * notifyChange

19: * setDataElement
20: evaluateState ()

1: * setData
2: evaluateState ()

DSSA Substage 4-5: Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes
large, it is convenient to separate groups of classes into separate packages. The
POC design has been divided into nine class packages:

u Subject Observer

u Specification

u Data Transformer

u Data Element

u Threads

u Utility

u Application

u Analysis Client

u Model Server.

5-20

Figure 5-11 shows the POC package diagram. The dependencies among the
classes are denoted by the dashed lines. The dependencies are the following:

u The Data Transformer package depends on the Specification package to
read in Analysis and Model specifications.

u The Data Transformer package depends on the Data Element package to
hold the inputs and outputs for data transformers.

u The Data Transformer and Data Element packages depend on the Subject
Observer package to notify Data Transformers, Data Relationships, and Data
Element Sets of state changes in other objects that they depend on.

u The Data Transformer and Data Element packages depend on the Threads
package to execute models in parallel and to provide synchronization be-
tween threads and mutually exclusive access to shared data.

u The Data Transformer package depends on the Utility package for miscel-
laneous utility functions.

u The Application package depends on the Threads package for implement-
ing a thread-safe asynchronous signal-handling thread.

u The Analysis Client and Model Server packages depend on the Applica-
tion package to handle basic application functions, such as signal handles,
error login, command-line parsing, as well as functions specific to
CORBA clients and servers, such as initialization and object registration.

u The Analysis Client package depends on the Data Transformer package to
coordinate the execution of analyses consisting of multiple potentially dis-
tributed models.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-21

Figure 5-11. Package Diagram

DSSA Substage 4-6: Develop Class Diagrams

Class diagrams are used to illustrate class models and their relationships with
other classes. The class diagrams will be shown with their package.

SUBJECT OBSERVER PACKAGE

The Subject Observer package contains two classes, which define a subject-
observer pattern (also called publish-subscribe or observer-observable). Each
subject may have any number (zero or more) of observers and each observer may
receive notifications from any number of subjects. The class diagram is shown in
Figure 5-12.

ASAC EA POC

Data Transformer
Package

Data Element
Package

Specification
Package

Subject Observer
Package

Utility Package

Threads Package

Application
Package

Model Server
Package

Analysis Client
Package

5-22

Figure 5-12. Subject Observer Class Diagram

*

EA_Subject
mState : EA_State
mObservers : list<EA_Observer*>

EA_Subject()
~EA_Subject()
registerObserver()
getState()
setState()
notifyObservers()

*
EA_Observer

EA_Observer()
~EA_Observer()
notifyChange()

<<interface>>

* *

Subject

The subject is a superclass that defines the properties of an object being observed.
A subject may have any number of dependent observers. All observers are notified
when the subject undergoes a change in state. A list of properties and methods for
this class can be found in Table 5-1.

Table 5-1. Properties and Methods for Subject Class

Private Properties

mState : EA_State The current state of the subject.

mObservers :
list<EA_Observer*>

The list of observers that the subject notifies when its state changes.

Public Methods

EA_Subject (initState :
enum EA_State =
WAITING) : EA_Subject

Constructor.

~EA_Subject () : Destructor.

registerObserver (obs :
EA_Observer&) : void

Registers an observer object as an observer of this subject.

getState () : enum
EA_State

Gets the current state of the subject.

Protected Methods

setState (newState : enum
EA_State) : void

Sets the state of the subject, and notifies its observers that the state
has changed by calling the notifyChange method on each observer.

Observer

The Observer defines an updating interface for objects that should be notified of
changes in a subject’s state. In response to notification, observers query the sub-
ject to synchronize its state with the subject’s state. A list of properties and meth-
ods for this class can be found in Table 5-2.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-23

Table 5-2. Properties and Methods for Observer Class

Public Methods

EA_Observ er () :
EA_Observer

Constructor.

~EA_Observer () : Destructor.

notifyChange (subj :
EA_Subject&) : void

Called by a subject to notify its observers that its state has changed.

SPECIFICATION PACKAGE

The Specification package contains classes that support reading and writing of
analysis and model specifications. An analysis specification is a file or other unit
of data that contains the information (e.g., inputs, outputs, names of models, rela-
tionships) necessary for creating an analysis that can be executed. Similarly, a
model specification contains the information necessary for creating and executing
a model as part of an analysis. The class diagram is shown in Figure 5-13.

5-24

Figure 5-13. Specification Package Class Diagram

EA_AnalysisSpec

mTransformers : list<vector<string>>
mRelationships : list<vector<string>>
mTransformerIterator : iterator
mRelationshipIterator : iterator

getNextDataTransformer()
EA_AnalysisSpec()
getNextDataRelationship()
$isAnalysis()

EA_DataStorage

mFilename : string

EA_DataStorage()
retrieve()
~EA_DataStorage()
store()
doRetrieve()
doStore()
getFilename()

EA_ModelSpec

mModelObjName : string

getModelName()
EA_ModelSpec()
$isModel()

EA_Specification

mEntries : map<string, string>

EA_Specification()
getNumEntries()
~EA_Specification()
getEntry()
doRetrieve()
doStore()

EA_TransformerSpec

mDescription : string
mInputs : list<EA_DataElemRec>
mOutputs : list<EA_DataElemRec>
mInputIterator : iterator
mOutputIterator : iterator

resetElementIterators()
~EA_TransformerSpec()
getNextInputDataElement()
getNextOutputDataElement()
EA_TransformerSpec()

EA_Scanner

mEntryDelim : char
mNVPairDelim : char
mCommentDelim : char
mInputStream : istream&

EA_Scanner()
skipComments()
~EA_Scanner()
nextEntry()
nextEntry()

DataStorage Class

The DataStorage class provides an interface to a data stream and enables objects
to store or retrieve themselves from the stream. The stream could be stored in a
file, an entry in a database, etc. Objects that inherit from the DataStorage class
must define exactly how the object is stored and retrieved. A list of properties and
methods for this class can be found in Table 5-3.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-25

Table 5-3. Properties and Methods for DataStorage Class

Private Properties
mFilename : string The name of the file to read data from and write data to.

Public Methods

EA_DataStorage
(filename : const
RWCString&) :
EA_DataStorage

Constructor.

retrieve () : void Operation that retrieves data objects. Calls doRetrieve on the sub-
class and passes it the input stream.

~EA_DataStorage ()
:

Destructor.

store () : void Operation that storess data objects. Calls doStore on the subclass
and passes it the output stream.

Protected Methods
doRetrieve (input :
istream&) : void

Virtual function that defines how to read the data from the input
stream. Must be defined by the subclass.

doStore (output :
ostream&) : void

Virtual function that defines how to write the data to the output
stream. Must be defined by the subclass.

getFilename () :
const RWCString&

Returns the filename that the object is stored to and retrieved from.

Specification Class

The Specification class defines the basic format for all specifications and defines
how the specifications are stored and retrieved via the DataStorage interface that it
inherits. A specification is made up of one or more sections or entries that it
parses using the Scanner class. The “getEntry” method provides access to the data
in each section of the specification. A list of properties and methods for this class
can be found in Table 5-4.

5-26

Table 5-4. Properties and Methods for Specification Class

Private Properties

mEntries : map<string,
string>

The data associated with each section (entry) of the specifica-
tion, stored as name/value pairs.

Public Methods

EA_Specification (name :
const RWCString&) :
EA_Specification

Constructor.

getNumEntries () : int Returns the number of entrie (named sections) that

~EA_Specification () : Destructor.

getEntry (name : const
RWCString&, value :
RWCString&) : bool

Returns the data associated with the specified section (entry)
of the specification.

Protected Methods

doRetrieve (input :
istream&) : void

Reads and parses the specification from the given input
stream.

doStore (output :
ostream&) : void

Writes the specification to the given output stream.

Scanner Class

The Scanner class provides the ability to parse an input stream that contains
name/value pairs in a specified format. The Scanner class is used by the Specifi-
cation class to parse model and analysis specifications, as well as by the Da-
taRelationship class to process data relationship specification files. A list of
properties and methods for this class can be found in Table 5-5.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-27

Table 5-5. Properties and Methods for Scanner Class

Private Properties

mEntryDelim : char The delimiter that specifies the end of a section or entry.

mNVPairDelim : char The delimiter between the name of a section or entry and its
value.

mCommentDelim : char The delimiter which indicates the beginning of a comment.

mInputStream : istream& The input stream which the scanner reads from.

Public Methods

EA_Scanner (input : is-
tream&, entry : char = ';',
nvPair : char = '=', com-
ment : char = '#') :
EA_Scanner

Constructor.

skipComments () : is-
tream&

Skips blank lines and lines that begin with the comment de-
limiter.

~EA_Scanner () : Destructor.

nextEntry (name :
RWCString&, value :
RWCString&) : istream&

Gets the name and value of the next entry in the specification
and returns true if a complete entry was found.

nextEntry (value :
RWCString&) : istream&

Reads data (skipping comments) until an end of entry delim-
iter is found.

TransformerSpec Class

The TransformerSpec class inherits from the Specification class and encapsulates
the understanding of entries that are common to both model and analysis specifi-
cations. In particular, the TransformerSpec class parses the sections that define the
input and output data elements for a model or an analysis. A list of properties and
methods for this class can be found in Table 5-6.

5-28

Table 5-6. Properties and Methods for TransformerSpec Class

Private Properties

mDescription : string A description of the data transformer.

mInputs :
list<EA_DataElemRec>

A list of the inputs that this data transformer requires.

mOutputs :
list<EA_DataElemRec>

A list of the outputs that this data transformer produces.

mInputIterator : iterator Iterator used to iterate over the list of input data elements.

mOutputIterator : iterator Iterator used to iterate over the list of output data elements.

Public Methods

resetElementIterators () :
void

Resets the iterators to the beginning of the lists.

~EA_TransformerSpec () : Destructor.

getNextInputDataElement
(element :
EA_DataElemRec_t&) :
bool

Gets the next input data element from the specification.

getNextOutputDataEle-
ment (element :
EA_DataElemRec_t&) :
bool

Gets the next output data element from the specification.

Protected Methods

EA_TransformerSpec
(name : const
RWCString&) :
EA_TransformerSpec

Constructor.

ModelSpec Class

The ModelSpec class manages specification data for a particular model. A list of
properties and methods for this class can be found in Table 5-7.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-29

Table 5-7. Properties and Methods for ModelSpec Class

Private Properties

mModelObjName : string The name of the CORBA model object to call in
order to run this model.

Public Methods

getModelName () : const
RWCString&

Returns the name of the CORBA model object to
call to run this model.

EA_ModelSpec (name : const
RWCString&) : EA_ModelSpec

Constructor.

isModel (name : const
RWCString&) : bool

Returns true if the specified string is the name of a
model specification.

AnalysisSpec Class

The AnalysisSpec class manages specification data for a particular analysis.
A list of properties and methods for this class can be found in Table 5-8.

Table 5-8. Properties and Methods for AnalysisSpec Class

Private Properties

mTransformers :
list<vector<string>>

The list of data transformers that make up the analy-
sis.

mRelationships :
list<vector<string>>

The list of data relationships that the analysis con-
tains.

mTransformerIterator : iterator Iterator used to iterate over the list of data trans-
formers.

mRelationshipIterator : iterator Iterator used to iterate over the list of data relation-
ships.

Public Methods

getNextDataTransformer (name :
RWCString&, id : RWCString&) :
bool

Gets the name of the next data transformer that is
part of the analysis from the specification.

EA_AnalysisSpec (name : const
RWCString&) : EA_AnalysisSpec

Constructor.

getNextDataRelationship (from :
RWCString&, to : RWCString&,
name : RWCString&) : bool

Gets the next data relationship that is part of the
analysis from the specification.

isAnalysis (name : const
RWCString&) : bool

Returns true if the specified string is the name of an
analysis specification.

5-30

DATA TRANSFORMER PACKAGE

The Data Transformer package contains the classes that execute an analysis. The
Subject, Observer, DataElementSet, and Thread classes are shown in the class
diagram to illustrate their relationships with the classes in this package. They are
not a part of the Data Transformer package. All DataTransformers inherit from the
Subject and Observer classes and contain two DataElementSets; one acts as its
input, and the other its output. An Analysis is a special kind of DataTransformer,
which contains other DataTransformers (models and analyses) and DataRelation-
ships. DataRelationships act as links in an analysis that pass data from one
DataTransformer to the next. The class diagram for the Data Transformer package
is shown in Figure 5-14.

Figure 5-14. Transformer Class Diagram

EA_ModelProxy

mModelName : string

$createModel()
~EA_ModelProxy()
run()
EA_ModelProxy()
convertInput()
convertOutput()

EA_Thread

(from Threads Package)

*

EA_Subject

EA_Subject()
~EA_Subject()
registerObserver()
getState()
setState()
notifyObservers()

(from Subject Observer Package)

*

EA_Observer

EA_Observer()
~EA_Observer()
notifyChange()

(from Subject Observer Package)

<<interface>>

* *

1

1..*

parent

0..1

EA_Analysis

mChildren : map<string, EA_DataTransformer>
mRelationships : list<EA_DataRelationship>
mAnalysisName : string
mTimeEstimate : string

$createAnalysis()
getTimeEstimate()
~EA_Analysis()
run()
addDataTransformer()
EA_Analysis()
addDataRelationship()
$cleanupChildren()

children
*

input

1 1..*

1..*

EA_DataRelationship

mInput : EA_DataElementSet*
mOutput : EA_DataElementSet*
mSpecName : string

EA_DataRelationship()
notifyChange()
~EA_DataRelationship()
performRelationship()
performDefault()
evalRelationship()

1

1..*

output

1

input

1 1

output

1

EA_DataElementSet

EA_DataElementSet()
EA_DataElementSet()
getDataElement()
~EA_DataElementSet()
addDataElement()
deleteDataElement()
setDataElement()
evaluateState()
getNumElements()

(from Data Element Package)

1

EA_DataTransformer

mParent : EA_DataTransformer*
mInput : EA_DataElementSet
mOutput : EA_DataElementSet

EA_DataTransformer()
notifyChange()
~EA_DataTransformer()
getInput()
getOutput()
getParent()

0..1

*

1 1..*

1..*1

1 1

1 1

DataTransformer

The DataTransformer is an abstraction for a class that transforms input data values
into output data values. The class has two DataElementSets that contain the input
and output values of the transformer. The DataTransformer “watches” its input
DES and automatically performs the transformation when all of its inputs have

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-31

been set (i.e., the input DES changes to the “ready” state). A list of properties and
methods for this class can be found in Table 5-9. The DataTransformer inherits
from the Subject and Observer classes, so it also contains the properties and
methods shown in Tables 5-1 and 5-2.

Table 5-9. Properties and Methods for DataTransformer Class

Private Properties

mParent : EA_DataTransformer* A pointer to the parent of this data transformer or
NULL if it has no parent.

mInput : EA_DataElementSet The set of data elements that acts as the input to the
data transformer.

mOutput : EA_DataElementSet The set of data elements that acts as the output of
the data transformer.

Public Methods
EA_DataTransformer (spec :
EA_TransformerSpec&, parent :
EA_DataTransformer*) :
EA_DataTransformer

Constructor. Initializes the input and output DESes
based on the TransformerSpec. Also registers as an ob-
server to its input DES.

notifyChange (subj : EA_Subject&) : void Virtual method from EA_Observer. If the input DES is
ready, start a thread and run the data transformer in it.

~EA_DataTransformer () : Destructor.

getInput () : EA_DataElementSet& Returns a reference to the data transformer's input DES.

getOutput () : EA_DataElementSet& Returns a reference to the data transformer's output DES.

getParent () : EA_DataTransformer* Returns a pointer to the transformer's parent analysis, or
null if there isn't one.

Analysis

The Analysis class is a data transformer that is made up of other data tranformers
(models or other analyses). The class manages the creation and instantiation of its
data transformers and the data relationships between them. A list of properties and
methods for this class can be found in Table 5-17. The Analysis class inherits
from the DataTransformer class, so it also contains the properties and methods
shown in Tables 5-1, 5-2, and 5-9.

5-32

Table 5-10. Properties and Methods for Analysis Class

Private Properties

mChildren : map<string, EA_DataTransformer> A list of data transformers that make up the body of
the analysis. Each transformer has a name associated
with it.

mRelationships : list<EA_DataRelationship> The list of relationships that are part of this analysis.

mAnalysisName : string The name of the analysis.

mTimeEstimate : string A rough estimate of the time that the analysis will
take to execute.

Public Methods
createAnalysis (name : const RWCString&,
parent : EA_DataTransformer* = NULL) :
EA_Analysis*

Factory method used to create an analysis given an
analysis specification name.

getTimeEstimate () : const RWCString& Returns an estimate of the time that this analysis is
expected to take.

~EA_Analysis () : Destructor.

Protected Methods
run () : void Runs the analysis. Once the analysis has started,

waits until its output DES becomes ready (i.e. all
models have finished and written their output).

Model

The Model class is a DataTransformer that acts as an interface or proxy to a dis-
tributed model application. When the time comes for the Model class to transform
its input data, the Model class passes its inputs via CORBA to a model that runs
on a separate machine. A list of properties and methods for this class can be found
in Table 5-11. The Model class inherits from the DataTransformer class, so it also
contains the properties and methods shown in Tables 5-1, 5-1, and 5-9.

Table 5-11. Properties and Methods for Model Class

Private Properties

mModelName : string The name of the CORBA model object to call in
order to run this model.

Public Methods
createModel (name : const RWCString&, par-
ent : EA_DataTransformer*) : EA_ModelProxy*

Factory method used to create a Model given a
Model Specification name.

~EA_ModelProxy () : Destructor.

Protected Methods
run () : void Runs the model by passing the inputs from the input

DES to a CORBA model object and storing its out-
put in the output DES.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-33

DataRelationship

The DataRelationship class acts as a link between two DataTransformers. It waits
for the one of the DES of the input DataTransformer to be set, gets its data values,
performs any necessary data transformation or conversion, and sets the values in
the one of the DES of the target DataTransformer. A list of properties and meth-
ods for this class can be found in Table 5-12.

Table 5-12. Properties and Methods for DataRelationship Class

Private Properties

mInput : EA_DataElementSet* The DES which acts as the input to the data rela-
tionship.

mOutput : EA_DataElementSet* The DES that the data relationship writes its output
to.

mSpecName : string The name of the data relationship specification (if
any) to use for this relationship.

Public Methods
EA_DataRelationship (in :
EA_DataTransformer&, out :
EA_DataTransformer&, specName : const
RWCString& = "") : EA_DataRelationship

Constructor.

notifyChange (subj : EA_Subject&) : void If the input DES is ready, perform the relationship
and set the values of the output DES.

~EA_DataRelationship () : Destructor.

DATA ELEMENT PACKAGE

The Data Element package contains the DataElementSet, DataElement, and
DataElementIterator classes and their relationships. The Subject and Mutex
classes do not belong to this package, but are shown in this package to illustrate
their relationship to the DataElementSet class. The class diagram illustrates that a
DataElementSet contains zero or more DataElements and that each DataElement
has a string associated with it which represents its name within the DataElement-
Set. The class diagram for the Data Element package is shown in Figure 5-15.

5-34

Figure 5-15. Data Element Class Diagram

EA_DataElementIterator

mIterator : iterator<string, EA_DataElement>

EA_DataElementIterator()
getDataElement()
~EA_DataElementIterator()
reset()
operator ++()
getName()

1

data

*

EA_DataElement

mNames : vector<string>
mValues : vector<vector<string>>
mLabels : vector<string>
mUnits : vector<string>
mTypes : vector<EA_DataType>
mDomains : vector<string>
mLimits : vector<string>
mFormat : vector<string>
mNumRows : size_t
mNumCols : size_t
mState : EA_State

EA_DataElement()
EA_DataElement()
numRows()
~EA_DataElement()
numCols()
getState()
getDimension()
getName()
getLabel()
getUnits()
getDomain()
getType()
getValue()
getValue()
getTable()
getRow()
getCol()
setName()
setLabel()
setUnits()
setDomain()
setType()
setValue()
setValue()
setState()

1

EA_DataElementSet

mElements : map<string, EA_DataElement>
mLock : EA_Mutex

EA_DataElementSet()
EA_DataElementSet()
getDataElement()
~EA_DataElementSet()
addDataElement()
deleteDataElement()
setDataElement()
evaluateState()
getNumElements()

1*

lock

1

EA_Mutex

EA_Mutex()
~EA_Mutex()
lock()
unlock()
trylock()

(from Threads Package)

1 1

EA_Subject

EA_Subject()
~EA_Subject()
registerObserver()
getState()
setState()
notifyObservers()

(from Subject Observer Package)

name : string

DataElementSet

The DataElementSet is a collection of DataElement objects. Each DataElement
object has a name associated with it that is used to refer to the DataElement. Da-
taElementSets also contain a Mutex object that is used to protect the DataEle-
mentSet from simultaneous access by multiple DataTransformers or
DataRelationships. A list of properties and methods for this class can be found in
Table 5-13.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-35

Table 5-13. Properties and Methods for DataElementSet Class

Private Properties

MElements : map<string, EA_DataElement> An associative array which contains the set of data
elements associated with their names.

Public Methods
EA_DataElementSet () : EA_DataElementSet Default constructor.

EA_DataElementSet (names : vector<string>) :
EA_DataElementSet

TBD.

GetDataElement (name : const RWCString&) :
EA_DataElement*

Return the data element whose name matches the
name given.

~EA_DataElementSet () : Destructor.

AddDataElement (name : const RWCString&) :
EA_DataElement*

Creates a new data element with the specified name,
adds it to the set, and returns a pointer to it. If the
specified name is already in use, returns null.

DeleteDataElement (name : const RWCString&) :
void

Removes from the set and deletes the data element
with the specified name.

SetDataElement (name : const RWCString&,
value : const RWCString&, state : enum
EA_State = READY) : void

Sets the value and state of the specified data element.
If the data element does not already exist, it is created
and added to the DES.

EvaluateState () : enum EA_State Evaluates the state of the DES, and notifies its ob-
servers if the state has changed.

GetNumElements () : size_t Returns the number of data elements within the DES.

DataElement

The DataElement class represents a chunk of data that can take one of four forms:
a scalar value, an array of scalar values, a record of scalar values, or a 2-D table of
scalar values in which each column can contain a different data type.Methods are
provided for setting and retrieving the information the DataElement. A list of
properties and methods for this class can be found in Table 5-14.

5-36

Table 5-14. Properties and Methods for DataElement Class

Private Properties

mNames : vector<string> The names of each column of the table.

mValues : vector<vector<string>> The row of values for each column of the table (i.e. a
2-D array).

mLabels : vector<string> The labels for each column of the table.

mUnits : vector<string> The units for each column of the table.

mTypes : vector<EA_DataType> The data types of each column of the table.

mDomains : vector<string> The domains of each column of the table.

mLimits : vector<string> The limits of each column of the table.

mFormat : vector<string> The format of each column of the table.

mNumRows : size_t The number of rows in the table.

mNumCols : size_t The number of columns in the table.

mState : EA_State The current state (set or unset) of the data element.

Public Methods
EA_DataElement (rows : size_t = 1, cols :
size_t = 1, state : enum EA_State =
WAITING) : EA_DataElement

Contructor. Creates a data element with the specified
number of rows and columns.

EA_DataElement (name : const
RWCString&, value : const RWCString&,
state : enum EA_State = READY) :
EA_DataElement

Constructor. Creates a scalar (i.e. 1x1) data element
with the given name and value.

~EA_DataElement () : Destructor.

getDimension () : enum EA_Dimension Returns the dimension of the data element. Returns
either SCALAR (1x1), ARRAY (Nx1), STRUCT
(1xN), or TABLE (NxN).

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-37

Table 5-14. Properties and Methods for DataElement Class (Continued)

Private Properties

NumRows () : size_t

numCols () : size_t

getState () : enum EA_State

getName (col : size_t = 0) : const RWCString&

getLabel (col : size_t = 0) : const RWCString&

getUnits (col : size_t = 0) : const RWCString&

getDomain (col : size_t = 0) : const RWCString&

getType (col : size_t = 0) : enum EA_DataType

getValue (row : size_t = 0, col : size_t = 0, units :
const RWCString& = "") : RWCString

getValue (units : const RWCString&) : RWCString

getTable () : RWCString

getRow (row : size_t = 0) : RWCString

getCol (col : size_t = 0, units : const RWCString& =
"") : RWCString

setName (name : const RWCString&, col : size_t = 0
) : void

setLabel (label : const RWCString&, col : size_t = 0) :
void

setUnits (units : const RWCString&, col : size_t = 0) :
void

setDomain (domain : const RWCString&, col : size_t
= 0) : void

setType (type : enum EA_DataType, col : size_t = 0)
: void

setValue (value : const RWCString&, state : enum
EA_State = READY) : void

setValue (value : const RWCString&, row : size_t, col
: size_t) : void

setState (state : enum EA_State) : void

Gets or sets the various attributes of the data
element.

5-38

DataElementIterator

The DataElementIterator class allows programs to iterate through all the elements
in a DataElementSet. Because the DataElementIterator is a separate object and
maintains its own state, it allows multiple threads to iterate over the same DES
simultaneously. A list of properties and methods for this class can be found in
Table 5-15.

Table 5-15. Properties and Methods for DataElementIterator Class

Private Properties

mIterator : iterator<string, EA_DataElement> The underlying iterator that this class wraps.

Public Methods
EA_DataElementIterator (set :
EA_DataElementSet&) :
EA_DataElementIterator

Constructor. Creates an iterator to iterate over the
elements of the specified DES.

getDataElement () : EA_DataElement* Returns a pointer to the current data element.

~EA_DataElementIterator () : Destructor.

reset () : void Reset the iterator to its initial position and state.

operator ++ () : bool Advances the position of the iterator and returns true
if the new position is valid, false if the end of the set
has been reached and the new position is not valid.

getName () : RWCString Returns the name of the current data element.

THREADS PACKAGE

The Threads package contains a Thread class and a Mutex class. The classes act
as object-oriented wrappers for POSIX APIs that support basic multithreading.
The Thread class acts as a base class for classes that require a separate thread of
execution in a program. The Mutex class provides a locking mechanism for
classes that can be used by more than one thread at a time and must ensure that
certain operations are executed by only one thread at a time. The class diagram for
the Threads package is shown in Figure 5-16.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-39

Figure 5-16. Threads Class Diagram

EA_Thread
mThread : pthread_t

EA_Thread()
~EA_Thread()
start()
stop()
join()
$delay()
$self()
run()
$dispatch()

EA_Mutex
mMutex : pthread_mutex_t

EA_Mutex()
~EA_Mutex()
lock()
unlock()
trylock()

Thread Class

The Thread class acts as a base class for classes that require a separate thread of
execution within a program. The “start” method creates the thread and calls the
“run” method that is provided by the subclass to act as the body of the thread. The
“stop” method cancels execution of the thread and the “join” method provides a
synchronization mechanism by waiting (i.e., blocking the caller) until the thread
has finished. A list of properties and methods for this class can be found in Ta-
ble 5-16.

Table 5-16. Properties and Methods for Thread Class

Private Properties

mThread : pthread_t The id of the underlying POSIX thread.

Public Methods
EA_Thread () : EA_Thread Constructor.

~EA_Thread () : Destructor.

start () : void Starts the thread and calls the "run" method defined
by the subclass.

stop () : void Cancels (aborts) execution of the thread.

join () : void Waits for the thread to finish execution.

delay (secs : unsigned int) : void Pauses the specified number of seconds.

self () : pthread_t Returns the thread id of the thread which calls the
function.

Protected Methods
run () : void A virtual function which must be defined by the

subclass to be the body of the thread.

5-40

Mutex Class

The Mutex class provides a exclusive locking mechanism that allows only one
thread at a time to execute a “critical” section of code. The Mutex class typically
is used by classes that act as shared communication mechanisms between two or
more threads. One thread “owns” the mutex at any given time. The “lock” mecha-
nism waits until the current owner is finished, which it signals by calling the “un-
lock” mechanism. The “trylock” method is similar to “lock”, but instead of
waiting until the current owner is done it returns false if the mutex is unavailable.
A list of properties and methods for this class can be found in Table 5-17.

Table 5-17. Properties and Methods for Mutex Class

Protected Properties

mMutex : pthread_mutex_t The id of the underlying POSIX mutex.

Public Methods
EA_Mutex () : EA_Mutex Constructor.

~EA_Mutex () : Destructor.

lock () : void Waits the current owner of the mutex (if any) to
finish, then locks the mutex (i.e. claims ownership).

unlock () : void Unlocks the mutex and allows a waiting thread to
lock it and continue execution.

trylock () : bool If the thread is unlocked (i.e. no other thread is cur-
rently using it), locks the thread and returns true.
Otherwise returns false.

UTILITY PACKAGE

The Utility package contains the Evaluate class, which is used by the DataRela-
tionship class to evaluate the expressions that make up a data relationship specifi-
cation. The class diagram for the Utility package is shown in Figure 5-17.

Figure 5-17. Utility Class Diagram

EA_Evaluate
mExpression : string
mDataElements : EA_DataElementSet&

evaluate()
EA_Evaluate()
evalExpression()
evalConditional()
evalLogicalOr()
evalLogicalAnd()
evalEquality()
evalRelational()
evalAddition()
evalMultiply()
evalUnary()
evalPrimary()
evalIdentifier()

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-41

Evaluate Class

The Evaluate class is used to evaluate C-style mathematical expressions, which
are used in data relationship specifications. The “evaluate” method returns the
numeric value of the expression. The input DES of the data relationship is used to
look up the values of variables that occur in the expression.

APPLICATION PACKAGE

The Application package contains classes that encapsulate the basic behavior of
CORBA client and server applications. The package also contains an Application
class that is a parent class of the CORBA client & server classes. The Application
class encapsulates basic application-level behavior, such as signal handling,
command-line parsing, and error logging. The class diagram for the Application
package is shown in Figure 5-18.

Figure 5-18. Application Class Diagram

EA_CorbaServer

$ sBOA : CORBA::BOA_ptr
mCorbaObjects : list<CORBA::Object_ptr>

EA_CorbaServer()
~EA_CorbaServer()
addCorbaObject()
execute()
handleSignal()
$shutdown()

EA_CorbaClient

$ sORB : CORBA::ORB_ptr

EA_CorbaClient()
$toString()
~EA_CorbaClient()
$toObject()
$getOrbService()

EA_Application

$ sProcessID : long
$ sAppPtr : EA_Application*
$ sUserLogin : string
mSignals : sigset_t
mAppName : string
mAppData : string
mOptions : map<string, string>

EA_Application()
$getProcessID()
~EA_Application()
$getUserLogin()
getAppName()
getAppData()
getNumOptions()
getOptionState()
getOptionValue()
execute()
handleSignal()
parseCmdLine()
run()
$dispatchSignal()
$isOption()

EA_Thread

EA_Thread()
~EA_Thread()
start()
stop()
join()
$delay()
$self()
run()
$dispatch()

(from Threads Package)

EA_Log

$ sFileName : string
$ sLevel : int
$ sStream : ostream

$setLogLevel()
$addLogLevel()
$subLogLevel()
$isEnabled()
$setLogFile()
$logStream()
$timeStamp()
$cleanup()

initializes

5-42

Application Class

The Application class provides basic application-level functions, such as signal
handling, command-line, parsing, and initialization of the application error log. It
has a separate thread (by inheriting from the Thread class) which provides han-
dling of asynchronous signals. Both synchronous and async signals are dispatched
to the “handleSignal” method, which can be overridden by subclasses. Various
methods exist for getting command-line information, such as whether an option
was given or not, or the value of an option that takes a parameter. The Application
Class also defines an “execute” method that must be provided by the subclass to
define the body of the application. A list of properties and methods for this class
can be found in Table 5-18.

Table 5-18. Properties and Methods for Application Class

Private Properties

sProcessID : long The process id of the current executable.

sAppPtr : EA_Application* Static variable which points to the single application
object in the program.

sUserLogin : string The login (i.e. id) of the user that ran the current
executable.

mSignals : sigset_t The set of asynchronous signals which the applica-
tion handles.

mAppName : string The file name of the current executable program
(i.e. argv[0]).

mAppData : string The data which was passed to the application on the
command line.

mOptions : map<string, string> The list of options and arguments which were
passed to the application on the command line.

Public Methods
EA_Application (argc : int, argv : char**) :
EA_Application

Constructor. Parses the command line, registers the
signal handlers, initializes the error log, and starts
the signal handling thread.

getProcessID () : long Returns the process id of the current executable.

~EA_Application () : Destructor. Stops the signal handling thread, and
cleans up the log file if necessary.

getUserLogin () : RWCString& Returns the user login of the user that executed the
application.

getAppName () : const RWCString& Returns the name of the executable (i.e. argv[0]).

getAppData () : const RWCString& Returns any data passed to the application on the
command line.

getNumOptions () : size_t Gets the number of options passed to the application
on the command line.

getOptionState (option : const RWCString&) : bool Returns true if the specified option was passed to the
application on the command line.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-43

Table 5-18. Properties and Methods for Application Class (Continued)

execute () : void A virtual function which must be defined by the
subclass to contain the body of the application.

Protected Methods
handleSignal (signal : int) : void A virtual function which provides basic signal han-

dling capabilities. Can be overridden by the sub-
class.

Log Class

This class provides error and debug message logging for an application. The log
messages can be written to standard output (the default) or a user-specified file.
Debug levels can be set that allow selective filtering of debug information at run-
time. A number of macros also are provided to simplify calling the “log Stream”
method. A list of properties and methods for this class can be found in Table 5-19.

Table 5-19. Properties and Methods for Log Class

Private Properties

sFileName : string The name of the log file (if any) to send messages to.

sLevel : int The current log level, which decides the level (i.e.
detail) of messages to send to the log.

sStream : ostream The current output stream that log messages are sent
to.

Public Methods
setLogLevel (level : int) : void Sets the current log level to the specified value.

addLogLevel (level : int = 1) : void Increments the log level by the specified value.

subLogLevel (level : int = 1) : void Decrements the log level by the specified value.

isEnabled (level : int) : bool Returns whether a message of the specified level
should be logged. Returns true if the specified level is
less-than-or-equal to the current log level.

setLogFile (logFile : string) : void Creates and sets the log file to a file with the speci-
fied name. All subsequent log messages will be sent
to this file.

logStream (line : unsigned int, file : string, tag :
char) : ostream&

Writes the given line number, file name, and tag to
the log along with a time stamp, then returns the log
stream which can be used to output a log message.

timeStamp () : string Returns a string which contains the current date and
time.

cleanup () : void Performs cleanup by closing the log file if necessary.

5-44

CorbaClient Class

The CorbaClient class is a subclass of the Application class that handles initiali-
zation of the ORB as well as encapsulating other basic CORBA client functions,
such as object-to-string and string-to-object conversion. A list of properties and
methods for this class can be found in Table 5-20.

Table 5-20. Properties and Methods for CorbaClient Class

Protected Properties

sORB : CORBA::ORB_ptr A reference to the ORB being used by the application.

Public Methods
EA_CorbaClient (argc : int, argv : char**) :
EA_CorbaClient

Constructor. Initializes the ORB.

toString (objRef : CORBA::Object_ptr) :
RWCString

Converts a CORBA object reference into a string repre-
sentation.

~EA_CorbaClient () : Destructor.

toObject (strObj : const char*) :
CORBA::Object_ptr

Converts a string representation of an object reference (a
"stringified" object reference) into an object reference.

getOrbService (name : const char*) :
CORBA::Object_ptr

Returns a reference to the given ORB service registersed
with the ORB.

CorbaServer Class

The CorbaServer class handles initialization of the BOA (Basic Object Adapter)
and encapsulates the registration and activation of CORBA objects. The class also
provides a signal handler that provides a clean shutdown of the server in the event
of certain external signals or internal error signals. A list of properties and meth-
ods for this class can be found in Table 5-21.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-45

Table 5-21. Properties and Methods for CorbaServer Class

Private Properties

sBOA : CORBA::BOA_ptr A reference to the BOA (Basic Object Adaptor)
used by the server.

mCorbaObjects : list<CORBA::Object_ptr> A list of CORBA objects which the server contains
& manages.

Public Methods
EA_CorbaServer (argc : int, argv : char**) :
EA_CorbaServer

Constructor. Initializes the BOA.

~EA_CorbaServer () : Destructor. Deactivates and releases the CORBA
objects owned by the server.

addCorbaObject (objRef : CORBA::Object_ptr) :
void

Registers and activates the specified CORBA ob-
ject, and adds it to the list of CORBA objects owned
by the server.

execute () : void Executes the CORBA event loop which continually
accepts incoming requests and passes them to the
proper object to be handled.

Protected Methods
handleSignal (signal : int) : void Overrides the Application class signal handling to

properly shut down the CORBA server when certain
signals are received.

ANALYSIS CLIENT PACKAGE

The Analysis Client package contains the driver for the AnalsysiClient applica-
tion. The class diagram for the Analysis Client package is shown in Figure 5-19.

Figure 5-19. Analysis Client Class Diagram

EA_CorbaClient

EA_CorbaClient()
$toString()
~EA_CorbaClient()
$toObject()
$getOrbService()

(from Application Package)

1

EA_AnalysisClient
mAnalysis : EA_Analysis

execute()
EA_AnalysisClient()
~EA_AnalysisClient()

0..1

EA_Analysis

$createAnalysis()
getTimeEstimate()
~EA_Analysis()
run()
addDataTransformer()
EA_Analysis()
addDataRelationship()
$cleanupChildren()

(from Data Transformer Package)

1 0..1

5-46

AnalysisClient Class

The AnalysisClient class inherits from the CorbaClient class and provides the
driver for the POC client application. The “execute” method instantiates an
Analysis, runs it, and then displays the results when it has finished. A list of prop-
erties and methods for this class can be found in Table 5-22.

Table 5-22. Properties and Methods for AnalysisClient Class

Private Properties

mAnalysis : EA_Analysis The analysis which the analysis client runs.

Public Methods
execute () : void Creates an analysis based on the specification given

on the command line, prompts for any necessary
input, then runs the analysis and outputs results.

EA_AnalysisClient () : EA_AnalysisClient Constructor.

~EA_AnalysisClient () : Destructor.

MODEL SERVER PACKAGE

The Model Server package contains all the classes that are used to implement the
CORBA server application for the POC. The package includes the generic Inter-
face definition language (IDL) for models, the ModelWrapper_i class that imple-
ments the IDL interface, and the class that acts as the driver for the server. The
class diagram for the Model Server package is shown in Figure 5-20.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-47

Figure 5-20. Model Server Class Diagram

EA_ModelServer

EA_ModelServer()
~EA_ModelServer()

EA::ModelWrapper

run()

<<interface>>

1

EA_CorbaServer

EA_CorbaServer()
~EA_CorbaServer()
addCorbaObject()
execute()
handleSignal()
$shutdown()

(from Application Package)

corba objects

*

EA_ModelWrapper_i
$ sNumCalls : unsigned long
mObjectName : string
mModelExec : string

EA_ModelWrapper_i()
run()
~EA_ModelWrapper_i()
writeInput()
parseOutput()
executeModel()

1*

creates

ModelWrapper Interface

The ModelWrapper interface is an IDL that provides a standard, generic interface
to distributed models in the ASAC EA system. The ModelWrapper interface pro-
vides a “run” method that takes a sequence of data as input and returns a sequence
of data as output.

ModelWrapper_i Class

The ModelWrapper_i class provides an implementation of the ModelWrapper
interface that wraps standalone models with simple file-oriented interfaces. The
class parses the input sequence, writes it to a file, and executes the model against
the input file. It then parses the models output file and returns the results as a se-
quence of data.

5-48

ModelServer Class

The ModelServer class inherits from the CorbaServer class and provides the
driver for the POC server application. The ModelServer class reads from a con-
figuration file specified on the command line and creates one or more Model-
Wrapper_i objects and registers and activates them as CORBA objects. Then it
runs as a server, accepting and handling requests sent to those objects, until it is
shutdown or otherwise killed.

Domain-Specific Software Architecture Substage 4-7:
Develop State Diagrams

State diagrams describe all possible states of a particular object and how the ob-
ject’s state changes on particular events. The following sections contain state dia-
grams only for the classes that require states.

ANALYSIS STATE DIAGRAM

The Analysis has four states: “Waiting,” “Running,” “Done,” and “Error.” On
creation of the Analysis, it creates an AnalysisSpecification, receives input and
output DataElementSets from the AnalysisSpecification, and registers as an ob-
server to its input DataElementSet. At the same time, the initial state of the Analy-
sis is set to the “Waiting” state. When the Analysis is notified of a state change on
its input DataElementSet, the Analysis finds out what the state is. If the input Da-
taElementSet is in the “Set” state, the Analysis will change to the “Running” state
and notify its observers. In the “Running” state, it will create the Models and Da-
taRelationships needed for the Analysis and will wait for its output DataElement-
Set to become “Set.” Once the output DataElementSet of the Analysis is “Set,” it
will go to the “Done” state where it will remain until either the Analysis input
DataElementSet becomes “Unset” (at which time the Analysis will go to the “Not
Ready To Run” state), or it is destroyed. Upon a system error, the Analysis will go
to the “Error” state. Figure 5-21 shows the Analysis state diagram.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-49

Figure 5-21. Analysis State Diagram

Normal Operation

entry: Create Analysis Spec
entry: Init mInput & mOutput

entry: Create Models
entry: Create Relationships
entry: Observe input DES

Waiting
Running

entry: Notify Observers
do: Wait

Done

entry: Notify Observers

Error
entry: Notify Observers

do: Handle Error

Analysis Destruction

Waiting
Running

entry: Notify Observers
do: Wait

Done

entry: Notify Observers

Create Analysis

notifyChange
[mInput.getState == READY]

[mOutput.getState == READY]

Error Detected Destroy

MODEL STATE DIAGRAM

The Model class has four states: “Waiting,” “Running,” “Done,” and “Error.” On
creation of the Model, it creates a ModelSpecification, receives input and output
DataElementSets from the ModelSpecification, and registers as an observer to the
input DataElementSet. At the same time, the initial state of the Model is the
“Waiting” state. When the Model’s input DataElementSet goes to the “Set” state,
the Model will change state to the “Running” state and notify its observers. In the
“Running” state, the Model will perform it’s transformation and will wait for its
output DataElementSet to become “Set.” Once the Model output DataElementSet
is “Set,” it will go to the “Done” state and will remain there until either the Model
input DataElementSet becomes “Unset” (at which time the Model will go to the
“Waiting” state), or it is destroyed. Upon a system error, the Model will go into
the “Error” state. Figure 5-22 shows the Model state diagram.

5-50

Figure 5-22. Model State Diagram

Normal Operation
entry: Create Model Spec

entry: Init mInput & mOutput
entry: Observe input DES

Waiting
Running

entry: Notify Observers
do: Run Model

do: Evaluate Output DES State

Done

entry: Notify Observers

Error

entry: Notify Observers
do: Handle Error

Model Destruction

Waiting
Running

entry: Notify Observers
do: Run Model

do: Evaluate Output DES State

Done

entry: Notify Observers

Create Model

notifyChange
[mInput.getState == READY]

[mOutput.getState == READY]

Error Detected Destroy

DATARELATIONSHIP STATE DIAGRAM

The DataRelationship class has four states: “Waiting,” “Running,” “Done,” and
“Error.” On creation of the DataRelationship, it creates the DataRelationship
Specification. The DataRelationship then receives input and output DataElement-
Sets from the DataRelationship Specification and registers as an observer to the
input DataElementSet. At the same time, the initial state of the DataRelationship
is the “Waiting” state. When its input DataElementSet goes to the “Set” state, the
DataRelationship will change state to the “Running” state and notify its observers.
In the “Running” state, the DataRelationship will perform its transformation and
will wait for its output DataElementSet to become “Set.” Once the DataRelation-
ship output DataElementSet is “Set,” it will go to the “Done” state and will re-
main there until either the DataRelationship input DataElementSet becomes
“Unset” (at which time the Model will go to the “Waiting” state), or it is de-
stroyed. Figure 5-23 shows the DataRelationship state diagram.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-51

Figure 5-23. DataRelationship State Diagram

Normal Operation
entry: Observe input DES

Waiting
Running

do: Perform Relationship
exit: Evaluate Output DES State

Done

Error
do: Handle Error

Relationship Destruction

Waiting
Running

do: Perform Relationship
exit: Evaluate Output DES State

Done

Create Relationship

notifyChange
[mInput.getState == READY]

Error Detected Destroy

DATAELEMENTSET STATE DIAGRAM

The DataElementSet class has three states: “Waiting”, “Ready,” and “Error.” On
creation of the DataElementSet, its initial state will be the “Waiting” state. The
DataElementSet will go to the “Ready” state when it evaluates its state and finds
all of its DataElements are in the “Ready” state. Upon a system error, DataEle-
mentSet will go into the “Error” state. Figure 5-24 shows the DataElementSet
state diagram.

5-52

Figure 5-24. DataElementSet State Diagram

Normal Operation
entry: Initialize DataElements

Waiting

entry: Notify Observers

Ready

entry: Notify Observers

Error

entry: Notify Observers
do: Handle Error

DES Destruction

Waiting

entry: Notify Observers

Ready

entry: Notify Observers

Create DES

evaluateState[All Elements Ready]

evaluateState[All Elements Not Ready]

Error Detected Destroy

DATAELEMENT STATE DIAGRAM

The DataElement class has three states: “Waiting”, “Ready” and “Error.” On
creation of the DataElement, its initial state will be the “Waiting” state. The Da-
taElementSet will go to the “Ready” state when its state is changed to “Ready” by
the SetState() command. It will change to the “Waiting” state when the SetState()
command sets it to “Waiting.” Upon a system error, DataElement will go into the
“Error” state. Figure 5-25 shows the DataElement state diagram.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-53

Figure 5-25. DataElement State Diagram

Normal Operation

entry: Initialize Value

Waiting Ready

Error
do: Handle Error

Element Destruction

Waiting Ready

Error Detected

Create Element

Destroy

setState(state)[state == READY]

setState(state)[state == WAITING]

DSSA Substage 4-8: Develop Deployment Diagrams

A deployment diagram shows processors, devices, and their connections. A proc-
essor is a hardware component capable of executing programs, i.e., a computer. A
device is a hardware component with no computing power, i.e., hardware con-
troller or modem. There are no devices in the ASAC EA system, so the POC
Deployment Diagram contains only processors and their connections with each
other. The Deployment Diagram is shown in Figure 5-26. It is a generic model
showing that there will be an AnalysisClient, riker, with an osagent on it as well
as multiple ModelServers, spock and worf, that will have Model Applications
running on them.

5-54

Figure 5-26. POC Deployment Diagram

riker

AnalysisClient
osagent

worf

ModelServer

spock

ModelServer

TCP/IP, IIOP

TCP/IP, IIOP

DSSA Substage 4-9: Review and Iterate

Review and iterate the items developed in DSSA stage 4.

DSSA STAGE 5—IDENTIFY REUSABLE ARTIFACTS

The goal for this phase of the domain-engineering process is to populate the soft-
ware architecture high-level design(s) with components that may be used to gen-
erate new applications in the domain.

The following substages of DSSA stage 5 were completed during the ASAC de-
velopment effort:

u 5-1 Develop and collect the reusable artifacts

u 5-2 Develop each module

u 5-3 Requirements, verification, and testing

u 5-4 Review and iterate.

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts

This substage addresses how to determine the best source of components to
populate the software architecture. It is often referred to as the make, buy, or
modify decision.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-55

ASAC SERVICES

Message broker and binding languages evaluated and selections during the design
effort and documented in the Aviation System Analysis Capability Executive As-
sistant Design. During development, we evaluated the need for an object-oriented
database management system, that uses the same techniques described in the de-
sign document.

The ASAC EA system needs to store and retrieve data related to the execution of
models. A data management service was identified in the system architecture to
provide this functionality. A number of options were available for providing the
service, but to provide a robust and scaleable solution, we decided to use a com-
mercial database management system.

Many types of database management systems exist. Four main categories of sys-
tems are relational, object-oriented, object-relational, and hierarchical. The last
two categories of databases are primarily used in specialized applications that do
not match the domain of the ASAC system. Therefore, the first two categories
were investigated to provide the data management service.

Relational databases, e.g., Sybase and Oracle, are the most commonly used data-
bases, and are widely used in business applications. In these databases, data are
stored in tables consisting of rows and columns of data; much like a simple Excel
spreadsheet. Despite their name, relational databases can become quite complex
and unwieldy when complex relationships between tables exist. Another problem
with relational databases is that their model does not match the object-oriented
paradigm, requiring writing additional layers of code to handle mappings between
objects and the relational database. The extra layer of code can be quite complex
and require a great deal of debugging.

Object-oriented databases are relatively new, but have quickly gained acceptance
in certain domains as the products have matured. Unlike relational databases, ob-
ject-oriented databases store objects and their relationships directly, making stor-
ing data and translating between objects in the code and the database almost
seamless. In applications that are highly object-oriented and involve complex re-
lationships, like the ASAC EA, an object-oriented database can save a great deal
of time in developing and maintaining the system. In addition, an object-oriented
database can be orders of magnitude faster in these types of applications because
they store relationships directly, thereby avoiding the need to perform complex
relational joins. For these reasons, we decided that an object-oriented database
would be the best choice for the data management service.

5-56

A number of object-oriented database management systems (OODBMS) were
initially investigated. They included

u GemStone

u O2 (Ardent Software)

u Objectivity

u ObjectStore (ObjectDesign)

u POET

u Versant.

On the basis of our initial research and general selection criteria, such as the plat-
forms and languages supported, three databases were selected for more thorough
evaluation. They are

u O2 (Ardent Software)

u ObjectStore (ObjectDesign)

u Versant.

We formulated evaluation criteria and questions to use as guidelines and areas of
investigation during the detailed evaluation phase. Unlike relational databases,
OODBMSs differ from one another significantly. Choosing the best one depends
greatly on the specific application and requirements. To assess the differences, we
contacted and questioned technical representatives of the three vendors. Also,
each representative supplied evaluation copies of their OODBMS.

We tested the evaluation software to determine, at a minimum

u Ease of installation

u Ease of administration

u Basic functionality (using included demonstration programs)

u Ease of porting existing ASAC EA code.

We chose Versant because it was the only database that performed acceptably in
all the evaluation areas. O2 did not enable us to easily port existing ASAC EA
code and did not include a suitable persistent collection class library. ObjectStore
proved difficult to install and administer and was a clumsier overall interface than
the other two products.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-57

DSSA Substage 5-2: Develop Each Module

DEVELOPMENT ENVIRONMENT

The environment used for developing the ASAC EA POC consisted of desktop
and server machines, as well as a number of tools and libraries which are de-
scribed below. A diagram of how the machines, tools, and libraries were config-
ured is in Figure 5-27.

u Machines

ä HP 9000/803 Server running HP-UX (unix) version 10.20
The HP server machine was used for developing and testing all the
C++ code for the POC.

ä Compaq Desktop PCs running Windows 95
Desktops PCs were used for initial prototyping of the design in the
Java language and for reverse engineering the design when the POC
was completed. The PCs also served as an interface to the server ma-
chine where the actual development took place.

u Tools and Libraries

ä HP C++ Compiler (aC++)
The HP C++ compiler was used to compile and debug the C++ code
developed for the POC.

ä VisiBroker for C++
VisiBroker for C++ is the CORBA Object Request Broker used to
build and deploy the POC in a distributed environment across multiple
platforms.

ä Revision Control System
Revision Control System (RCS) is a “revision control” or “version
control” system the was used to baseline the code at the end of the
POC development phase. All development done during the next phase
of development will use that code as a baseline and RCS will be used
to track and manage any changes made to the code.

ä make
Build scripts were written on the server using a utility called make.
The scripts provide automated builds (compilation) of the developed
source code.

5-58

ä Rational Rose for C++
Rational Rose was used during development to view the existing de-
sign. It also was used after development to reverse-engineer and update
the design based on the developed code.

ä RogueWave Tools.h++ library
The RogueWave Tools library provides a number of utility and con-
tainer classes that were used in the development of the C++ code for
the POC.

ä Parasoft CodeWizard
CodeWizard finds programming and design problems in C++ or Java
source code automatically.

ä Java JDK 1.1.5
The Java Development Kit from Sun was used for developing a quick
prototype of the POC before beginning development in C++.

ä Perl 5.004
The Practical Extraction and Report Language (perl) is a concise gen-
eral-purpose language often used for scanning text and printing for-
matted reports. Its Common Gateway Interface (CGI) and libraries
make it well suited for forms processing and on-the-fly page creation.
Perl also contains object-oriented features.

Figure 5-27. ASAC EA Proof of Concept Development Environment

Desktop PC
Rational Rose

Java JDK

Desktop PC
Rational Rose

HP-UX Server
C++ Compi ler

VisiBroker for C++
RCS
make

Rogue Wave Library
CodeWizard

Perl

DEVELOPMENT PROCESS

The development started with the design that was completed during the previous
phase of the project and documented in the Aviation System Analysis Capability
Executive Assistant Design. The development steps were

u Prototyping

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-59

u Requirements Definition

u Coding and Unit Testing

u Integration

u System Testing

u Documentation.

A prototype was developed initially for verifying key aspects of the design and for
discovering implementation issues early in the development. The prototype was
developed in the Java language on desktop PCs. Java was chosen because it al-
lows rapid development, has a CORBA binding, has built-in support for threads,
and maps very well to C++. Also when the prototype was being developed, the
IDL interface for the CORBA ModelServer was designed and tested.

Requirements then were defined in detail based on information from the archi-
tecture and design documents. Nine categories of requirements were developed
which contain a total of sixty-two detailed requirements.

After the prototype was finished and requirements were carefully defined, the full
system was coded in C++. Classes were coded according to the design and the
C++ Coding Standards chosen for the project. When necessary, test drivers were
written to test individual classes or a group of classes. Additional classes were de-
signed and implemented as required for encapsulating certain functionality, e.g.,
threads and error logging. As issues arose during the development, solutions were
prototyped or tested as necessary and then implemented. As classes were finished,
they were put under configuration management using RCS.

When the core functionality of the classes had been completed, the classes were
integrated into the two pieces of the POC: the AnalysisClient and the ModelServer.
Each was integrated as early as possible to avoid redesign and rework caused by
undiscovered problems propagating to the end of the development phase. As
 additional functionality was developed, it was integrated into the system.

System-level test procedures were developed based on the basis of the functional
requirements of the system. Once developed, the system was run against the test
cases and the results verified. Deficiencies were logged as a problem report and
tracked until the problem was corrected and re-verified.

Once the POC was completely developed, its complete design was captured to use
as input for the design and development of the beta system. One possible method
to capture the design was to modify the existing design, making changes and
adding additional classes as necessary. However, Rational Rose, the design tool
used, provided a slightly more elegant solution. The finished code was analyzed
by Rational Rose, and the class model was reverse-engineered from the actual

5-60

code. This process is not perfect and the resulting model had to be modified, but
much less than would have been required for the existing model.

BANK PROTOTYPE

A banking demonstration or example program that shipped with the Visigenic
ORB was used as the basis for a quick prototype to test some of the concepts re-
lating to the ASAC EA client-server communication. Three main areas were tested

1. Communications over CORBA between a Java client and a C++ server

2. Asynchronous callbacks from the server to the client

3. Execution of the Java client as an applet running in a browser.

Versions of the Visigenic program were available in both Java and C++, which
enabled us to easily test the first area, communication between a Java client and a
C++ server.

The second area was tested by modifying interfaces between the client and server
to allow the server to call CORBA objects on the client, which in turn updated the
client. This area was tested without problems.

The third area was tested by modifying the client to run as an applet in a browser.
Although this area is more trivial than the first two areas, it was the most prob-
lematic because of inaccurate and insufficient documentation in the Visigenic
manuals. Solutions to the problems were discovered only by searching various
CORBA-related Internet newsgroups. Once the problems were remedied, the area
was successfully completed.

In addition to testing the three areas, the prototype helped to validate aspects of
the system design and provided useful information for the implementation and
deployment phases of the project.

DSSA Substage 5-3: Requirements, Verification, and Testing

ASAC EA POC REQUIREMENTS

Fifteen requirements were applicable to the ASAC EA POC. They are:

u AE0001 The Analyst shall have the capability to execute an analysis if an
off-line administrator has granted the appropriate permissions.

u AE0003 When an analysis is executed, the names of the models that are
executed, as part of that analysis, will be logged to a log file.

u AE0004 When an analysis is executed, its inputs and outputs will be
logged.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-61

u AE0005 When a model is executed, its inputs and outputs will be logged.

u AE0006 Upon completion of the execution of an analysis, the results will
be presented to the user if the user is logged into the system.

u AE0008 ASAC will provide a message to the user indicating a rough esti-
mated time required to execute an analysis. Note: This will be a very rough
estimate, as there are currently no plans to perform an interrogation of net-
work and system(s) loading at the time of execution to provide a better es-
timate, not to mention the affect of data set size on model execution time.

u AM0001 The capability shall be provided to create an analysis by using
off-line tools.

u AM0003 The capability shall be provided to update an analysis by using
off-line tools.

u AS0001 An analysis may contain one or more models or analyses.

u AS0002 Analyses may have default input values.

u DC0001 ASAC will accommodate operation of its models at remote sites.

u DC0003 ASAC EA shall support the concurrent execution of more than
one instance of the same analysis on the same or different machines.

u DC0004 ASAC EA shall support the concurrent execution of more than
one instance of the same model on the same or different machines.

u DC0005 The physical location of the models shall be transparent to the
ASAC EA.

u EH0003 The user shall be notified if a model server is not available.

These fifteen requirements were validated as part of the ASAC EA POC accep-
tance.

POC IMPLEMENTATION

Figure 5-28 shows the POC implementation. The POC analysis contains four
models, Traffic, Cost, Revenue and Profit; six data relationships; and five user
inputs. We chose this configuration because it exercises many of the characteris-
tics of an analysis (i.e., single and multiple data relationships between models,
single models feeding multiple models, and multiple models feeding single
models).

5-62

Figure 5-28. Proof of Concept Implementation

Model inputs, outputs, and calculations are described in Table 5-23 below.

Table 5-23. Proof of Concept Model Descriptions

Model Inputs Outputs Calculations

Traffic Stage Length

Number of Passengers

Revenue Passenger Miles Revenue Passenger Miles =
(Passengers) × (Stage Length)

Cost Fixed Cost

Load Factor

Available Seat Miles

Cost

Available Seat Miles = (Reve-
nue Passenger Miles) ¸ (Load
Factor)

Cost = (Fixed Cost) + (Avail-
able Seat Miles) × (0.1)

Revenue Yield

Revenue Passenger Miles

Revenue Revenue = (Revenue Passenger
Miles) × (Yield)

Profit Cost

Revenue

Profit Profit = (Revenue) - (Cost)

To complete the analysis, the ASAC EA POC performed the following:

u Built the analysis and gave it an input.

u Constructed the models and data relationships between the models and
analysis.

Cost Model

Revenue Model

Traff ic Model Profi t ModelInput Output

Available Seat Miles

Profit

Revenue

CostRevenue Passenger Mi les

Revenue Passenger Mi les

Fixed Cost, Load Factor

Stage Length,
Number of

Passengers

Yield

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-63

u The models transformed their input data into output data.

u When all transformations were finished, and the analysis was complete,
stored the final output.

The models used for the analysis were distributed. The analysis communicated
with the distributed models using Visigenic’s implementation of the OMG
CORBA standard that makes the distributed nature of the models virtually trans-
parent. The actual models were wrapped by a standard interface, defined by using
OMG IDL that allowed the models to be distributed and provided clients with a
standard method for invoking all models. Models for the analysis were developed
using perl, with an interface similar to the interface of the current ASAC models.
Each model was wrapped to enable distributed communication. The analysis ap-
plication and the model wrappers were developed on the HP-UX platform by
using the C++ programming language. The input and output data structures and
default values for each model were specified by a prototype system catalog.

ASAC EA POC TESTING

Six procedures were developed to test the fifteen ASAC EA POC requirements.
Procedures TP-AE-1 and TP-AE-2 test the Analysis Execution requirements,
TP-AM-1 the Analysis Management requirements, TP-AS-1 the Analysis Specifi-
cation requirements, TP-DC-1 the Distributed Computing requirements, and
TP-EH-3 the Error Handling requirement. Table 5-24 maps ASAC EA POC
requirements to the appropriate test procedure and lists the implementation classes
used to test a requirement.

Table 5-24. ASAC EA Proof of Concept Requirements and Test Procedures

Requirement Test Procedure Implementation Classes

AE0001 TP-AE-1 EA_AnalysisClient

AE0003 TP-AE-2 EA_Log, EA_Analysis

AE0004 TP-AE-2 EA_Log, EA_Analysis

AE0005 TP-AE-2 EA_Log, EA_ModelProxy

AE0006 TP-AE-1 EA_AnalysisClient, EA_DataElementSet

AE0008 TP-AE-1 EA_AnalysisClient, EA_AnalysisSpec

AM0001 TP-AM-1 EA_Specification, EA_DataStorage

AM0003 TP-AM-1 EA_Specification, EA_DataStorage

AS0001 TP-AS-1 EA_Analysis, EA_AnalysisSpec

AS0002 TP-AS-1 EA_AnalysisSpec, EA_DataElementSet,

EA_DataElement

DC0001 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,
EA_ModelServer, CORBA

5-64

Table 5-24. ASAC EA Proof of Concept Requirements and Test Procedures
(Continued)

Requirement Test Procedure Implementation Classes

DC0003 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,

EA_AnalysisClient, CORBA

DC0004 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,
EA_ModelServer, CORBA

DC0005 TP-DC-1 EA_ModelProxy, EA_ModelSpec, CORBA

EH0003 TP-EH-3 EA_ModelProxy

The ASAC EA POC test procedures were successfully completed on 23 February
1998. One minor problem report was issued during the testing. The problem was
resolved and rechecked before the test was completed. A summary of the test re-
sults is in Table 5-25. The as-run test procedures are in Appendix A.

Table 5-25. Summary of the ASAC EA Proof of Concept Test Results

Test # Date Tested by Witnessed by Results

TP-AE-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AE-2 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AM-1 February 23, 1998 Kevin Anderson Eileen Roberts PR #1 Issued,
Passed

TP-DC-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AS-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-EH-3 February 23, 1998 Kevin Anderson Eileen Roberts Passed

ASAC EA POC DEMONSTRATION

After the ASAC EA POC was tested successfully, it was demonstrated to NASA.
Four scenarios were demonstrated

u Single Analysis

u Multiple Analysis

u Load Balancing

u Fault Tolerance.

In Figures 5-29 through 5-32, each box represents a server. The underlined name
in each box is the name of the server, the boxes on the left are analysis servers and
the boxes on the right are model servers. The lines indicate communication paths,
and an X through a box indicated that it was shut down during execution.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-65

Single-Analysis Scenario

The single-analysis scenario, depicted in Figure 5-29, demonstrated the following:

u Four models running on four separate machines.

u When the POC analysis was run, each model was called at the appropriate
time.

u Two models, cost and revenue, were run simultaneously.

Figure 5-29. Single-Analysis Scenario

Riker
AnalysisCl ient

Vis igenic Agent

Riker
Traf f ic Model

W o r f
Cost Model

Spock
Revenue Mode l

Uhura
Prof i t Model

5-66

Multiple-Analysis Scenario

The multiple-analysis scenario, depicted in Figure 5-30, demonstrated the fol-
lowing:

u Two instances of the POC analysis ran simultaneously.

u Each analysis called each model server simultaneously.

u Each model server ran two copies of the requested model.

Figure 5-30. Multiple-Analysis Scenario

Riker
AnalysisClient

Visigenic Agent

Riker
Traff ic Model

Wor f
Cost Model

Spock
Revenue Model

Uhura
Profi t Model

Riker
AnalysisClient

Load-Balancing Scenario

The load-balancing scenario, depicted in Figure 5-31, demonstrated the following:

u Two different models were run on each server.

u Two instances of the POC analysis were run simultaneously.

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-67

u Each analysis chose a different instance of each model.

Figure 5-31. Load-Balancing Scenario

Riker
AnalysisCl ient

Vis igenic Agent

Riker
Traff ic Model
Prof i t Model

Wor f
Cost Model

Traff ic Model

Spock
Revenue Model

Cost Model

Uhura
Prof i t Model

Revenue Model

Riker
AnalysisCl ient

Fault-Tolerance Scenario

The fault-tolerance scenario, depicted in Figure 5-32, demonstrated the following:

u Two instances of the POC analysis ran simultaneously.

u During execution, one of the model servers was shutdown.

u The analyses recovered and continued execution.

5-68

Figure 5-32. Fault-Tolerance Scenario

Riker
AnalysisCl ient

Visigenic Agent

Riker
Traff ic Model
Prof i t Model

Wor f
Cost Model

Traff ic Model

Spock
Revenue Model

Cost Model

Uhura
Profi t Model

Revenue Model

Riker
AnalysisCl ient

POC USER GUI EVALUATION

In addition to the ASAC EA POC, a mockup Java GUI client was developed as a
prototype for the end-user interface to the EA system. The mock-up was devel-
oped to gather early user feedback on the general look feel, and navigational
metaphors, and for demonstrating to NASA along with the ASAC EA POC.

The GUI created for the ASAC EA POC was a nonfunctional prototype and was a
standalone (not connected to the server).

RESULTS OF THE POC

The ASAC EA POC test procedures were successfully completed on February 23,
1998. The ASAC EA POC and GUI were demonstrated to and accepted by NASA
in March 1998. The ASAC EA POC

Aviation System Analysis Capability Executive Assistant Proof of Concept

5-69

u Successfully integrated distributed models in various configurations

u Demonstrated validity of system design

u Demonstrated single and multiple analyses

u Demonstrated load balancing and fault tolerance

u Works like final system will work

u Produced reusable products that will be used in the final system.

DSSA Substage 5-4: Review and Iterate

Review and iterate the items developed in DSSA stage 5.

6-1

Chapter 6
ASAC EA Beta Version

As mentioned in Chapter 5, this chapter discusses each of the applicable areas of
DSSA stages 4 and 5 of the ASAC EA Beta version.

The ASAC EA Beta version expands on the ASAC EA POC. As described in
Chapter 5, the Beta version will meet all of the ASAC EA system requirements
except optimization and security. Figure 6-1 shows the context diagram of the
ASAC EA Beta version.

The analyses that are available in the ASAC Executive Assistant (First Genera-
tion), at http://www.asac.lmi.org/eawelcome.html, will be incorporated into the
ASAC EA Beta version. The analyses are

u Aircraft Technology

u Air Traffic Management.

The ASAC EA Beta version will be demonstrated to NASA in November 1998.

Figure 6-1. Beta Version Context Diagram

M O D E L
APPLICATIONM O D E L

APPLICATION

M O D E L
APPLICATIONM O D E L

APPLICATION

ANALYST

USER
APPLICATION

ANALYSIS
APPLICATION

S Y S T E M
ADMINISTRATOR

M O D E L
APPLICATION

DRIVER
APPLICATION

M O D E L
INTEGRATOR

Data

Data
Analysis History

Document

Catalogs
Templates

Models

Models

CATALOG
REPOSITORY

TEMPLATE
REPOSITORY

Analysis Templates and
Documents, History
Documents

Executive Assistant

TEMPLATE
DEVELOPER

Templates

System Use

DEPENDENCY
REPOSITORY

.

6-2

BETA VERSION GOALS

The ASAC EA POC was developed to address the high risk areas of the ASAC
EA system. The goals for the ASAC EA Beta version were to expand on the
ASAC EA POC by

u developing the client (user) application,

u expanding the analysis and model applications,

u integrating the client and analysis applications, and

u creating and fielding a pre-release version of the ASAC EA for initial
testing.

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE

ASSUMPTIONS

The assumptions defined in the design phase of the project and described in the
Aviation System Analysis Capability Executive Assistant Design still apply. In ad-
dition, the following assumptions were made while implementing the Beta ver-
sion:

u ASAC EA Clients must be capable of running a Java virtual machine, ver-
sion 1.1.6 or greater, and must be able to connect to the AnalysisServer
over the Internet by using CORBA protocols as implemented by Inprise’s
(previously Borland/Visigenic) VisiBroker ORB.

 REVIEW AND ITERATE DSSA SUBSTAGE 2-9: DEFINE

ISSUES

 Issues remaining from POC are as follows:

u What are the space constraints on user systems (maximum size for the user
application)? What is the target size of the analysis application?

 The analysis client is designed to run on a Pentium-class machine with
32 megabytes (MBs) of random access memory (RAM) or greater. Size of
the application, including the Java virtual machine, should not exceed
20 MB of disk space.

u Do we use a database or some other mechanism (flat files) for storing
analysis and model specifications? If we use a database, is it relational,
OO, or a hybrid?

Aviation System Analysis Capability Executive Assistant Beta Version

6-3

 An object-oriented database will be used to store analysis and model speci-
fications as well as other data used by the system.

u When a model fails because of an error, how is its parent analysis notified?
(How do we handle errors in a multithreaded environment?)

Use the Subject/Observer paradigm and observe when the model changes
its state to error. Also propagate this change to the client by using a
distributed callback mechanism very similar to the Subject/Observer para-
digm.

New issues were identified while developing the ASAC EA Beta version. They
were:

u How does ASAC handle inputs or outputs that do not match its current
two-dimensional format for data elements?

 Data that is greater than two-dimensions, or has a variable number of di-
mensions, does not fit well into the current data structure defined by the
ASAC POC. The structure could be expanded to handle more than two
dimensions, but this would make editing and viewing the data difficult to
the user. Instead, for the Beta, we added the facility to link data elements
together in ways that can mimic n-dimensional data structures. This is a
fairly easy addition to implement, and it also keeps the interface simple for
the user since they only deal with two dimensions at a time.

u How does ASAC handle binary (i.e., graphics) and other types of data that
models may return as output beyond the currently specified types of data?

 This will be investigated further after the beta, but the current thinking is
to expand the CORBA interface definition by using unions that could be
used to specify additional types of data elements, such as binary data.

DSSA STAGE 4—DEVELOP AND REFINE BETA

VERSION ANALYSIS AND MODEL APPLICATION

DOMAIN MODELS

In addition to the POC domain models created for the analysis and model applica-
tions, an entire part of the ASAC EA system, the user application, or GUI
client is new to the ASAC EA Beta version. The user application has its own set
of domain models. For easy comparison and viewing, the complete set of analysis
and model application domain models are followed by the complete set of user
application domain models.

6-4

Analysis and Model Application domain models that were developed for the POC
and documented in Chapter 5 were refined during Beta version development. The
domain models that were refined are:

u 4-3 Use case diagrams

u 4-4 Interaction diagrams

ä Sequence diagrams

u 4-5 Package diagrams

u 4-6 Class diagrams

u 4-7 State diagrams

u 4-8 Deployment diagrams.

New classes were added while implementing the Beta version to support new
features, such as breakpoints, and integrate the GUI client and the server. The new
classes are:

u Breakpoint

u AnalysisServer

u AnalysisServer_i

u AnalysisObserver

u ConversionUtils.

More detail about these classes will be in the discussion of the DSSA Substages in
this chapter.

DSSA Substage 4-3: Develop Use Case Diagrams

No changes were made to the use case diagrams for the ASAC EA Beta version.

DSSA Substage 4-4: Develop Interaction Diagrams

No fundamental changes were made to the relationships between objects, so no
changes to the existing interaction diagrams were necessary for the ASAC EA
Beta version. One new set of interaction diagrams (performing a DataRelation-
ship) was added to show the interaction between the Breakpoint and DataRela-
tionship classes.

Aviation System Analysis Capability Executive Assistant Beta Version

6-5

PERFORMING A DATARELATIONSHIP

Figure 6-2. Performing a DataRelationship Sequence Diagram

Input Data : EA_
DataElementSet

Data Relationship Breakpoint Output Data : EA_
DataElementSet

notifyChange

isPreConv ()

break ()

break ()

performRelationship ()

evaluateState ()

run ()

Start a thread
to perform the
relationship

[if preConv]

[if postConv]

If a breakpoint is
set, pause the
relationship.

Figure 6-3. Performing a DataRelationship Collaboration Diagram

Input Data : EA_DataElementSet Data Relationship : EA_DataRelationship

Breakpoint : EA_Breakpoint Output Data : EA_DataElementSet

1: notifyChange

2: run ()

3: isPreConv ()
4: break ()

5: performRelationship ()

6: break () 7: evaluateState ()

6-6

DSSA Substage 4-5: Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes
large, it is convenient to separate groups of classes into separate packages. The
Beta server design has been divided into nine class packages:

u Subject Observer

u Specification

u Data Transformer

u Data Element

u Threads

u Utility

u Application

u Analysis Server

u Model Server.

Figure 6-4 shows the Beta server package diagram. The diagram is almost identi-
cal to the POC package diagram except that the Analysis Client package is now
the Analysis Server package. The GUI client has taken the place of the Analysis
Client package. The new Analysis Server package handles the creation and exe-
cution of analyses, as well as the communication with the GUI client. The de-
pendencies among the classes are denoted by the dashed lines. The dependencies
are the following:

u The DataTransformer package depends on the Specification package to
read in Analysis and Model specifications.

u The DataTransformer package depends on the DataElement package to
hold the inputs and outputs for data transformers.

u The DataTransformer and Data Element packages depend on the Subject
Observer package to handle notify DataTransformers, DataRelationships,
and DataElement Sets of state changes in other objects that they depend on.

u The DataTransformer and Data Element packages depend on the Threads
package to execute models in parallel and to provide synchronization be-
tween threads and mutually exclusive access to shared data.

Aviation System Analysis Capability Executive Assistant Beta Version

6-7

u The DataTransformer package depends on the Utility package to provide
miscellaneous utility functions.

u The Application package depends on the Threads package to implement a
thread-safe asynchronous-signal-handling thread.

u The Analysis Server and Model Server packages depend on the Applica-
tion package to handle basic application functions, such as signal handles,
error logging, command-line parsing, as well as functions such as initiali-
zation and object registration, specific to CORBA clients and servers.

u The Analysis Server package depends on the DataTransformer package to
coordinate the execution of analyses consisting of multiple potentially dis-
tributed models.

Figure 6-4. Beta Version Package Diagram

Data Transformer
Package

Data Element
Package

Specification
Package

Subject Observer
Package

Utility Package

Threads Package

Application
Package

Model Server
Package

Analysis Server
Package

DSSA Substage 4-6: Develop Class Diagrams

New classes were developed, and existing classes were modified while developing
the ASAC Beta to support new functions. The class diagrams for the new or
modified classes will be shown in accordance with their package. Classes that
have not changed significantly from the POC documented in Chapter 5 will not be
documented here.

6-8

DATA TRANSFORMER PACKAGE

The DataTransformer package contains the classes that are used for executing an
analysis. The Subject, Observer, DataElementSet (DES), and Thread classes are
shown on the class diagram to illustrate their relationships with the classes in this
package. They are not a part of the DataTransformer package. All DataTransform-
ers inherit from the Subject and Observer classes and contain two DataElement-
Sets; one acts as its input, and the other its output. An Analysis is a special kind of
DataTransformer, which contains other DataTransformers (Models & Analyses)
and DataRelationships. DataRelationships act as links within an analysis that pass
data from one DataTransformer to the next. The class diagram for the DataTrans-
former package is shown in Figure 6-5.

The major changes in the Data Transformer package from the POC are the addi-
tions to the DataTransformer and DataRelationship classes to support breakpoints
and the integration of the GUI client and the Breakpoint class to support break-
points. The three classes are described in this section.

Aviation System Analysis Capability Executive Assistant Beta Version

6-9

Figure 6-5. DataTransformer Class Diagram

EA_ModelProxy

mModelName : string

$createModel()
~EA_ModelProxy()
run()
EA_ModelProxy()
convertInput()
convertOutput()

EA_Thread
(from Threads Package)

*

EA_Subject

EA_Subject()
~EA_Subject()
registerObserver()
getState()
setState()
notifyObservers()

(from Subject Observer Package)

*

EA_Observer

EA_Observer()
~EA_Observer()
notifyChange()

(from Subject Observer Package)

<<interface>>

* *

input

1 1

output

1

EA_DataElementSet

EA_DataElementSet()
EA_DataElementSet()
getDataElement()
~EA_DataElementSet()
addDataElement()
deleteDataElement()
setDataElement()
evaluateState()
getNumElements()

(from Data Element Package)

1

parent

0..1

children
*

1

EA_Analysis

mChildren : map<string, EA_DataTransformer>
mRelationships : list<EA_DataRelationship>
mAnalysisName : string
mTimeEstimate : string

EA_Analysis()
~EA_Analysis()
$createAnalysis()
getTimeEstimate()
run()
addDataTransformer()
addDataRelationship()
$cleanupChildren()

1..*

input

1 1..*

1..*

output

1

EA_DataTransformer

mParent : EA_DataTransformer*
mInput : EA_DataElementSet
mOutput : EA_DataElementSet
mID : RWCString
mLabel : RWCString
mXPos, mYPos : short

EA_DataTransformer()
~EA_DataTransformer()
notifyChange()
getInput()
getOutput()
getParent()
getID()
getLabel()
getXPosition()
getYPosition()
setPosition()
resetState()

1 1

1 1

0..1

*

1

EA_DataRelationship

mInput : EA_DataElementSet*
mOutput : EA_DataElementSet*
mBreakpoint : EA_Breakpoint*
mSpecName : string

EA_DataRelationship()
~EA_DataRelationship()
notifyChange()
setBreakpoint()
resumeBreakpoint()
run()
performRelationship()
evalRelationship()
performDefault()

1

1..*

1 1..*

1..*1 0..1

EA_EventMutex

EA_EventMutex()
~EA_EventMutex()
isSet()
wait()
signal()
broadcast()

(from Threads Package)

EA_Breakpoint

preConversion : bool
changeLog : string

isPreConv()
isSet()
break()
resume()

1 0..1

DataTransformer

The DataTransformer is an abstraction for a class that transforms input data values
into output data values. It has two DataElementSets that contain the input and
output values of the transformer. The DataTransformer “watches” its input
DES and automatically performs the transformation when all of its inputs have
been set (i.e., its input DES changes to the “ready” state). A list of properties and
methods for this class can be found in Table 6-1. The DataTransformer inherits
from the Subject and Observer classes, so it also contains the properties and
methods shown in Tables 5-1 and 5-2.

6-10

Table 6-1. Properties and Methods for DataTransformer Class

Private Properties

mParent :
EA_DataTransformer*

A pointer to the parent of this data transformer or NULL if it has no parent.

mInput : EA_DataElementSet The set of data elements that acts as the input to the data transformer.

mOutput :
EA_DataElementSet

The set of data elements that acts as the output of the data transformer.

mID : RWCString The ID of the analysis that the client uses to refer to the analysis.

mLabel : RWCString The label or name of the analysis that should be displayed to the user.

mXPos, mYPos : short The X & Y coordinates that the analysis should be displayed at in the GUI.

Public Methods
EA_DataTransformer (spec :
EA_TransformerSpec&, par-
ent : EA_DataTransformer*) :
EA_DataTransformer

Constructor. Initializes the input and output DESes based on the Trans-
formerSpec. Also registers as an observer to its input DES.

~EA_DataTransformer () : Destructor.

notifyChange (subj :
EA_Subject&) : void

Virtual method from EA_Observer. If the input DES is ready, start a thread
and run the data transformer in it.

getInput () :
EA_DataElementSet&

Returns a reference to the data transformer's input DES.

getOutput () :
EA_DataElementSet&

Returns a reference to the data transformer's output DES.

getParent () :
EA_DataTransformer*

Returns a pointer to the transformer's parent analysis, or null if there isn't
one.

getID () : RWCString& Returns the ID that the clients uses to refer to this DataTransformer.

getLabel () : RWCString& Returns the label displayed to the user for this DataTransformer.

getXPosition () : short Returns the X position that the DataTransformer should be displayed at.

getYPosition () : short Returns the X position that the DataTransformer should be displayed at.

setPosition (x : short, y :
short) : void

Sets the X & Y position that the DataTransformer should be displayed at.

resetState () : void Resets the state of the DataTransformer.

DataRelationship

The DataRelationship class acts as a link between two DataTransformers. It waits
for the one of the DESs of the input DataTransformer to be set, gets its data val-
ues, performs any necessary data transformation or conversion, and sets the values
in the one of the DESs of the target DataTransformer. If a breakpoint is set on the
DataRelationship, the DataRelationship pauses until the breakpoint is resumed. A
list of properties and methods for this class can be found in Table 6-2.

Aviation System Analysis Capability Executive Assistant Beta Version

6-11

Table 6-2. Properties and Methods for DataRelationship Class

Private Properties

mInput : EA_DataElementSet* The DES that acts as the input to the data relationship.

mOutput : EA_DataElementSet* The DES that the data relationship writes its output to.

MBreakpoint : EA_Breakpoint* The breakpoint object for this relationship, or null if no break-
point is set.

MSpecName : string The name of the data relationship specification (if any) to use for
this relationship.

Public Methods
EA_DataRelationship (in :
EA_DataTransformer&, out :
EA_DataTransformer&, specName : const
RWCString& = "") : EA_DataRelationship

Constructor.

NotifyChange (subj : EA_Subject&) : void If the input DES is ready, perform the relationship and set the
values of the output DES.

~EA_DataRelationship () : Destructor.

SetBreakpoint (type : EA_BreakType) : void Sets a breakpoint on the data relationship. The argument specifies
whether the breakpoint should apply before or after the relation-
ship is executed.

ResumeBreakpoint () : void Resumes execution of the data relationship if a breakpoint is set.

Breakpoint

The Breakpoint class provides the ability to pause analyses at specified points
during execution. The Breakpoint class inherits from the EventMutex class, which
allows the Breakpoint class to suspend execution of the current thread and then
resume when an event is received. A list of properties and methods for this class
can be found in Table 6-3.

Table 6-3. Properties and Methods for Breakpoint Class

Private Properties

mPreConversion : bool Specifies whether the breakpoint should be applied before
(if true) or after (if false) the DataRelationship is performed.

Public Methods
isPreConv () : bool Returns whether the breakpoint should be set before or after

the data relationship (including any necessary conversion) is
executed.

isSet () : bool Returns whether or not the breakpoint is currently "set".

break () : void Breaks the current thread of control (i.e. the data relation-
ship which called the breakpoint) until resume is called.

resume () : void Resumes the breakpoint, which allows the data relationship
which called it to continue.

6-12

THREADS PACKAGE

The Threads package contains classes that support multithreaded execution. They
are used primarily to provide the ability to execute models in parallel. The classes
act as object-oriented wrappers that support basic multithreading. The Thread
class acts as a base class for classes that require a separate thread of execution in a
program. The Mutex class provides a locking mechanism for classes that can be
used by more than one thread at a time and must ensure that certain operations are
executed by only one thread at a time. The EventMutex class is used to block a
thread until an external “event” occurs. The only change to this package for the
Beta version was the addition of the EventMutex class to support breakpoints. The
class diagram for the Threads package is shown in
Figure 6-6.

Figure 6-6. Threads Class Diagram

EA_Thread

mThread : pthread_t

EA_Thread()
~EA_Thread()
start()
stop()
join()
$delay()
$self()
run()
$dispatch()

EA_Mutex

mMutex : pthread_mutex_t

EA_Mutex()
~EA_Mutex()
lock()
unlock()
trylock()

EA_EventMutex

mEvent : pthread_cond_t

EA_EventMutex()
~EA_EventMutex()
isSet()
wait()
signal()
broadcast()

EventMutex Class

The EventMutex class is used to suspend the execution of one or more threads
until an “event” occurs and is fired by another thread. It is primarily used to sup-
port breakpoints where a data relationship is paused until the user selects to re-
sume execution. A list of properties and methods for this class can be found in
Table 6-4.

Aviation System Analysis Capability Executive Assistant Beta Version

6-13

Table 6-4. Properties and Methods for EventMutex Class

Private Properties

mEvent : pthread_cond_t The id of the underlying POSIX event which is used to un-
lock the mutex.

Public Methods
EA_EventMutex () :
EA_EventMutex

Constructor.

~EA_EventMutex () Destructor.

isSet () : bool Returns whether or not the “event” associated with this
mutex is true or not.

wait () : void Suspends execution of the current thread until the mutex is
released by another thread calling “signal” or “broadcast.”

signal () : void Triggers the event and allows a single suspended thread to
continue execution.

broadcast () : void Triggers the event and allows all waiting threads to continue
execution.

UTILITY PACKAGE

The Utility package contains miscellaneous utility classes used by the Analysis-
Server. For the ASAC EA Beta version, a ConversionUtils class was added that is
used to convert between CORBA and internal data representations when passing
data to and from the GUI client. The package diagram for the Utility package is
shown in Figure 6-7.

Figure 6-7. Utility Package Class Diagram

EA_Evaluate

mExpression : string
mDataElements : EA_DataElementSet&

evaluate()
EA_Evaluate()
evalExpression()
evalConditional()
evalLogicalOr()
evalLogicalAnd()
evalEquality()
evalRelational()
evalAddition()
evalMultiply()
evalUnary()
evalPrimary()
evalIdentifier()

EA_ConversionUtils

$convert()
$convert()

ConversionUtils Class

The ConversionUtils class is used to convert DataElementSets to and from its
CORBA counterpart, the DataElement sequences. The ConversionUtils class is

6-14

used to convert data as they are passed to and from the GUI client. A list of prop-
erties and methods for this class can be found in Table 6-5.

Table 6-5. Properties and Methods for ConversionUtils Class

Public Methods
convert (in :
EA::DataElementSeq&, out :
EA_DataElementSet&) : void

Converts a CORBA DataElement sequence into a
DataElementSet object.

convert (in :
EA_DataElementSet&, out :
EA::DataElementSeq&) : void

Converts a DataElementSet object into a CORBA
DataElement sequence.

ANALYSIS SERVER PACKAGE

The Analysis Server package acts as the driver for the AnalysisServer component
of the ASAC EA. It also acts as the interface to the GUI client component and
drives the classes defined in the DataTransformer package that form the backbone
of the application. The class diagram for the Analysis Server package is shown in
Figure 6-8.

Aviation System Analysis Capability Executive Assistant Beta Version

6-15

Figure 6-8. Analysis Server Class Diagram

EA_AnalysisObserver

mSession : RWCString
mUsername : RWCString

loginUser()
notifyChange()
notifyEmail()

EA_AnalysisServer

execute()
EA_AnalysisServer()
~EA_AnalysisServer()

1

*

EA_Analysis

EA_Analysis()
~EA_Analysis()
$createAnalysis()
getTimeEstimate()
run()
addDataTransformer()
addDataRelationship()
$cleanupChildren()

(from Data Transformer Package)

EA::AnalysisServer

login_user()
get_directory()
list_analyses()
get_status()
get_users()
get_specification()
run_scenario()
resume_scenario()
cancel_scenario()
reset_scenario()
create_scenario()
set_specification()
set_breakpoint()

<<interface>>

EA_Observer

notifyChange()
(from Subject Observer Package)

<<interface>>

1

EA_CorbaServer

$ sBOA : CORBA::BOA_ptr
mCorbaObjects : list<CORBA::Object_ptr>

EA_CorbaServer()
~EA_CorbaServer()
addCorbaObject()
execute()
handleSignal()
$shutdown()

(from Application Package)

1
EA_AnalysisServer_i

$ mSession : size_t
$ mSessions : map<string, string>
$ mScenarios : map<string, EA_Analysis*>

login_user()
get_directory()
list_analyses()
get_status()
get_users()
get_specification()
run_scenario()
resume_scenario()
cancel_scenario()
reset_scenario()
create_scenario()
set_specification()
set_breakpoint()
$shutdown()
$authenticateUser()
$convertSpec()

1

*

implements

1

1

creates

observes

AnalysisServer Class

The AnalysisServer class inherits from the CorbaServer class and provides the
driver for the AnalysisServer application. The execute method instantiates an
AnalysisServer_i CORBA object, and then waits for requests. A list of properties
and methods for this class can be found in Table 6-6.

6-16

Table 6-6. Properties and Methods for AnalysisServer Class

Public Methods
execute () : void Creates an analysis server object and waits for requests.

EA_AnalysisClient () :
EA_AnalysisClient

Constructor.

~EA_AnalysisClient () : Destructor.

AnalysisServer_i Class

The AnalysisServer_i class implements the CORBA AnalysisServer interface and
forms the interface to the GUI client. A list of properties and methods for this
class can be found in Table 6-7.

Table 6-7. Properties and Methods for AnalysisServer_i Class

Private Attributes
mSession : size_t Counter used to generate scenario Ids.

mSessions : map<string, string> List of active scenarios associated with the user that is executing
them.

mScenarios : map<string, EA_Analysis*> List of active scenarios associated with the actual Analysis object
responsible for executing the scenario.

Public Methods
login_user (login : LoginInfo, callback :
EA::Client_ptr) : boolean

Logs the user into the system and registers their GUI to receive
updates to analysis owned by the given user.

get_directory (login : LoginInfo) : Directory Returns a recursive listing of all directories and files that the given
user has access to.

list_analyses (login : LoginInfo) : Analysis-
Seq

Returns a list of active analyses that are “owned” by the given user.
The user is authenticated before any data is returned.

get_status (scenario : ObjectID, model
ObjectID :) : EA::Status

Returns the current status (RUNNING, DONE, etc.) of the given
scenario or model.

get_users (login : LoginInfo) : StringSeq Returns a list of all known users in the system.

get_specification (login : LoginInfo, sce-
nario : ObjectID, model : ObjectID) : Speci-
fication

Returns all the information (the specification) about the given sce-
nario or model that the GUI client needs. This includes lists of in-
puts and outputs, labels, x & y position, as well as any models/
analyses that it contains and the relationships between them.

run_scenario (scenario : ObjectID) : void Starts the scenario running if all of required inputs have been set.

resume_scenario (scenario : ObjectID) :
void

Resume.

cancel_scenario (scenario : ObjectID) :
void

Cancel and close the scenario.

reset_scenario (scenario : ObjectID) : void Resets the scenario so that it can be executed again.

create_scenario (login : LoginInfo, name :
string) : ObjectID

Creates a scenario based on the given analysis. Loads the scenario
into memory so that it can be run.

Aviation System Analysis Capability Executive Assistant Beta Version

6-17

Table 6-7. Properties and Methods for AnalysisServer_i Class (Continued)

set_specification (login : LoginInfo, spec :
Specification, scenario : ObjectID, model :
ObjectID) : void

Set the inputs, outputs and x & y position on the given analysis or
model.

set_breakpoint (scenario : ObjectID, rela-
tionship : int, type : EA::BreakType) : void

Set a breakpoint on the given data relationship. The breakpoint
type determines the type of breakpoint. “NONE” removes any cur-
rent breakpoint.

shutdown () : void Cancel all analysis and shutdown the server.

Private Methods
authenticateUser (login : EA::LoginInfo) :
bool

Returns true if the given username and password refer to a valid
user, false otherwise.

convertSpec (dt : EA_DataTransformer,
spec : EA::Specification) : void

Extracts the specification of an analysis of model so that it can be
passed to the client via CORBA.

AnalysisObserver Class

The AnalysisObserver class notifies the GUI client of state changes in any analy-
ses or models it is running. The AnalysisObserver class also handles e-mail notifi-
cation if the analysis is running in the background. A list of properties and
methods for this class can be found in Table 6-8.

Table 6-8. Properties and Methods for AnalysisObserver Class

Private Attributes
mSession : RWCString The session ID of the analysis that this object is observing.

mUsername : RWCString The username of the user running the analysis. This is used
to determine where to deliver updates to the state of the
analysis or its children.

Public Methods
loginUser (username :
RWCString, callback :
EA::Client_ptr) : void

Registers the client (GUI) callback with the AnalysisOb-
server object.

notifyChange () : void Notifies the client of a state change in one of its analyses or
models.

notifyEmail () : void Sends e-mail to the user on completion of an analysis if the
user is not logged in.

DSSA Substage 4-7: Develop State Diagrams

No changes were made to the state diagrams for the ASAC EA Beta version.

6-18

DSSA Substage 4-8: Develop Deployment Diagrams

The Deployment Diagram for the ASAC EA Beta version is shown in Figure 6-9.
The model is generic, showing that there will be one or more GUI Clients, an
AnalysisServer on riker, the database on uhura, and as a ModelServer on worf that
will run multiple Model Applications.

Figure 6-9. Proof of Concept Deployment Diagram

riker

AnalysisClient
osagent

worf

ModelServer

uhura

Object Database

TCP/IP, IIOP

TCP/IP

Client PC

GUI Client

TCP/IP, IIOP

DSSA STAGE 4—DEVELOP AND REFINE BETA

VERSION USER APPLICATION DOMAIN MODELS

The following sections contain the user application domain models that were de-
veloped for the ASAC EA Beta version client.

Sixteen new classes were developed during implementation of the client part of
the Beta version. They are:

u DataElementSet

u DataElement

u LinkSet

u Link

u LinkCanvas

u Orb

u Client

Aviation System Analysis Capability Executive Assistant Beta Version

6-19

u ModelSet

u Model

u Analysis

u Analysis Manager

u AnalysisNode

u Access

u AnalysisDesktop

u ModelFrame

u MainFrame.

These classes will be discussed in more detail throughout the DSSA Substages in
this chapter.

DSSA Substage 4-3: Develop Use Case Diagrams

No changes were made to the use case diagrams for the ASAC EA Beta version.

DSSA Substage 4-4: Develop Interaction Diagrams

The Interaction diagrams developed for the ASAC EA Beta version client are:

u Login

u Loading an Analysis

u Running an Analysis.

6-20

LOGIN

Figure 6-10. Login Sequence Diagram

Analyst Orb AnalysisServer E rror /Exit

initialize
bind

[binds] [can 't bind]

getLoginInfo
validateLogin

[invalidLog in][validLogin]

getUsers

getCurren tA nalyses

getDirectory

Figure 6-11. Login Collaboration Diagram

Analyst Orb Analysis
Server

Error /Exit

1: initialize

5: getLoginInfo

2: bind
6: validateLogin

9: getUsers
10: getCurrentAnalyses

11: getDirectory

3: [binds]
8: [validLogin]

4: [can't bind]
7: [invalidLogin]

Aviation System Analysis Capability Executive Assistant Beta Version

6-21

LOADING AN ANALYSIS

Figure 6-12. Loading an Analysis Sequence Diagram

AnalysisServerAnalyst OrbAnaly sis
Manager

Analysis
Desktop

ModelFr ame

convert(EA.Spec, asac .Analysis)

openAnalysis

openAnalysis
getSpec

frame = new ModelFrame

addOrRaise(frame)

c loseAnaly sis

Figure 6-13. Loading an Analysis Collaboration Diagram

Analyst

Orb Analysis
Server

A na lysis
Manager

Analysis
D esktop

Model
Fr ame

2: c loseAnalysis

3: openAna lysis

5: convert(EA.Spec, asac.Analysis)

1: openAnalysis

8:

4: getSpec

7: addOrRaise(frame)

6: frame = new ModelFrame

6-22

RUNNING AN ANALYSIS

Figure 6-14. Running an Analysis Sequence Diagram

Analyst Analysis
Manager

Orb AnalysisServer Client

start
runAnalysis reset_scenario

run_scenario

updateState

breakpoint
AnalysisServer
ca lls Client
asynchronously to
updateState and
notify breakpoints

Figure 6-15. Running an Analysis Collaboration Diagram

Analyst Analys is
Manager

O rb Analys is
Server

C lient

1: s tart 2: runAnalys is

3: reset_scenario

4: run_scenario

5: breakpoint

6: updateState

DSSA Substage 4-5: Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes
large, it is convenient to separate groups of classes into separate packages. The
client design has been divided into seven class packages:

u The DataElement

u The Links

u The Server

u The Model

u The Tree

Aviation System Analysis Capability Executive Assistant Beta Version

6-23

u The Desktop

u The Frame

Figure 6-16 shows the POC client package diagram. The package associations
among the classes are denoted by the dashed lines.

Figure 6-16. ASAC EA Client Package Diagram

DataElement
Package

Links Package

Model Package

Frame Package

ASAC Client

Tree Package Desktop
Package

Server Package

DSSA Substage 4-6: Develop Class Diagrams

Class diagrams are used to illustrate class models and their relationships with
other classes. The class diagrams will be shown with their package.

THE DATAELEMENT PACKAGE

The DataElement package contains the classes that provide information about the
data elements or parameters for the ASAC models. The package includes the
DataElementSet and the DataElement classes. The class diagram is shown in
Figure 6-17.

6-24

Figure 6-17. DataElement Package Class Diagram

A b stra ctT a b le M o d e l

(from table)

Da ta E le m e n tS e t

$ n ullS e t

Da ta E le m e ntS e t()

Da ta E lem e nt S et(co un t : in t)

g et Cou n t() : in t

se tCo u n t(co u n t : i nt) : vo id

g et (in d e x : int) : asa c. Data E le me n t

g e t(ke y : S trin g) : Data E l e me n t

se t(in d e x : in t, d e : Da ta E le m e n t) : vo id

< <sta t ic>> co p y(fr om : Da ta E le m e ntS et) : Dat aE le m en tS e t

< <sta tic>> cop y(f ro m : Da ta E lem e n tS et , t o : Da ta E lem e nt S et) : vo id

t oS e tS tr ing () : S t ri ng

(fro m asa c)

Da ta E le m e n t

$ S T RING : in t = 0

$ T E X T : in t = 1

$ INT E G E R : in t = 2

$ FL O A T : in t = 3

$ B OO LE A N : in t = 4

$ E NUM : in t = 5

$ DA T E : in t = 6

$ T IME : in t = 7

m K ey : S t rin g

m V isible : bo ole an

m Row Co un t : in t

m Colu m nCo u n t : in t

m Colu m nT y pe : in t[]

m Co lu m n E di ta b le : b o o lea n[]

m Co lu m n K e y : S trin g []

m Co lu m n Nam e : S tri n g[]

m Co lu m n Uni ts : S trin g []

m Colu m nDo m ain : S trin g []

m Co lu m nFo rm at : S trin g[]

m V alu e : O bj ect [][]

Da taE le m en t()

Da ta E le m e n t(ke y : S trin g , ro w Co u n t : in t, co lu m n Co u n t : in t)

a llo ca te M em o ry() : vo id

de fa u lt Dat a() : vo id

to S tr in g () : S t ring

<<st at ic >> co py (from : Da taE le m en t) : Data E l e me n t

<<sta tic>> c o p y(from : Da ta E le m e n t, to : Da ta E le m e n t) : vo id

g e tK e y() : S trin g

se tKe y(ke y : S tri n g) : vo id

g et Nam e () : S t ring

se tNa m e (n a m e : S trin g) : vo id

isV isi b le () : bo ole an

se t Vi si ble (visib le : b oo l ea n) : vo id

ge tRo w Cou n t() : in t

se tRo w Cou nt (ro w Cou n t : int) : vo id

g e tCo lu m n Co u n t() : in t

se tCo lu m n Cou nt (co lum n Cou n t : int) : vo id

g etCo l u mn T yp e(col : in t) : in t

se tCo lum n T ype (t ype : int , co l : int) : vo id

g e tCo lu m n Cla ss(co l : in t) : Cla ss

g et Col u m nNa m e(co l : in t) : S tring

se tCo lum n Na me (n a me : S trin g , co l : in t) : vo id

ge tCo l um n K e y(co l : in t) : S t rin g

se tCo lu m nK e y(la b el : S tr in g , co l : int) : vo id

g e tCo lu m n Un its(co l : in t) : S trin g

se t Co lu m nUn its(un i ts : S tr in g , co l : i nt) : vo id

ge tCo l um n Do ma in (co l : in t) : S t ri ng

se tCo lum n Do m a in (do m a in : S trin g , co l : in t) : vo id

ge tCo l um n L im its(co l : in t) : S t rin g

se tCo lu m n L im its(lim its : S trin g , co l : in t) : vo id

g et Col u m nF orm at(co l : in t) : S t ring

se tCo lu m nFo rm at (fo rm a t : S tr in g , co l : int) : vo id

isCellE d ita ble (ro w : int, co l : in t) : bo ole an

is Colu m nE d ita ble (co l : in t) : bo o le a n

se tCo lu m nE dita ble (e dit ab le : b oo l ea n , co l : int) : vo id

g et V al u eA t (ro w : in t, co l : in t) : O b je ct

se t Va lu e A t(a V alu e : O bj ect , ro w : in t, co l : in t) : vo id

ge tT a b le E d it or(co l : in t) : T a b le Ce llE d ito r

g e tE d ito r(ro w V a lu e : in t, co lV a lu e : in t) : JCo m p o n e n t

g etE di to r(c ol : int) : JCo m po ne n t

<< sta tic>> g e tS t rin g B e tw e e n (str : S trin g, s tr S ta rt : S t ring , s trE n d : S t rin g) : S t ri ng

(from asac)

**

V e cto r

(fr om uti l)

Aviation System Analysis Capability Executive Assistant Beta Version

6-25

The DataElementSet Class

A DataElementSet is a collection of DataElements objects keyed by the
DataElement’s key. The DataElementSet is derived from the dynamic
java.util.Vector class with DataElement objects as elements. A list of properties
and methods for this class can be found in Table 6-9.

Table 6-9. Properties and Methods for DataElementSet Class

Public Properties:

nullSet : DataElementSet An empty set of DataElements.

Public Methods:

DataElementSet () : Constructor.

DataElementSet (count : int) : Constructor with the number of DataElements in the
set.

GetCount () : int Returns the number of DataElements in the set.

setCount (count : int) : void Sets the number of DataElements in the set.

get (index : int) : DataElement Returns the DataElement at the specified position.

get(key : String) : DataElement Returns the DataElement with the specified key.

set (index : int, DataElement :
DataElement) : void

Sets the DataElement at the specified position.

copy(from : DataElementSet) :
DataElementSet

Creates a copy of the specified DataElementSet.

copy(from : DataElementSet, to
: DataElementSet) : void

Copies from the DataElementSet to the specified Da-
taElementSet.

toSetString () : String Converts the DataElementSet to a string.

The DataElement Class

A DataElement represents a parameter or piece of data to a model. Each
DataElement can be a two-dimentional table containing a fixed number of rows
and a fixed number of columns. The columns consist of strings, integers, floating
point numbers, booleans, enumerated values, dates, or times. A DataElement also
can be a text file or a string containing multple lines. DataElements are derived
from AbstractTableModel, which provides the basic methods for the TableModel
interface. A list of properties and methods for this class can be found in
Table 6-10.

6-26

Table 6-10. Properties and Methods for DataElement Class

Public Properties:

STRING : int = 0 Enumerated (column) types of a DataElement.

TEXT : int = 1

INTEGER : int = 2

FLOAT : int = 3

BOOLEAN : int = 4

ENUM : int = 5

DATE : int = 6

TIME : int = 7

Private Properties:

mKey : String Unique identifier for this DataElement.

mVisible : boolean Determines if the DataElement is displayed as one of the
model parameters in the GUI.

mRowCount : int The number of rows in the DataElement.

mColumnCount : int The number of columns in the DataElement.

mColumnType : int[] The types of each column (i.e., string and integer).

mColumnEditable : boolean[] Used by the client/GUI to determine which columns are
editable.

mColumnKey : String[] Unique identifier for each column.

mColumnName : String[] Used by the client/GUI as the display label for each col-
umn.

mColumnUnits : String[] The value units for each column(i.e., meters and inches).

mColumnDomain : String[] The domain of each column(i.e., length and time).

mColumnFormat : String[] A string used to format/validate the value for each column.

mValue : Object[][] The actual DataElement values for each row and column.

Public Operations:

DataElement () : Constructor.

DataElement (key : String, rowCount : int, co-
lumnCount : int) :

Constructor with the key, number of rows and columns
specified.

toString () : String Basic method to output the DataElement as a string.

copy (from : DataElement) :
DataElement

Create a new copy a DataElement.

copy (from : DataElement, to :
DataElement) : void

Copies a DataElement.

getKey () : String Returns/specifies the desired attribute of the DataElement.

setKey (key : String) : void

getName () : String

setName (name : String) : void

Aviation System Analysis Capability Executive Assistant Beta Version

6-27

Table 6-10. Properties and Methods for DataElement Class (Continued)

isVisible () : boolean

setVisible (visible : boolean) : void

getRowCount () : int

setRowCount (rowCount : int) : void

getColumnCount () : int

setColumnCount (columnCount : int) : void

getColumnType (col : int) : int

setColumnType (type : int, col : int) : void

getColumnClass (col : int) : Class

getColumnName (col : int) : String

setColumnName (name : String, col : int) : void

getColumnKey (col : int) : String

setColumnKey (label : String, col : int) : void

getColumnUnits (col : int) : String

setColumnUnits (units : String, col : int) : void

getColumnDomain (col : int) : String

setColumnDomain (domain : String, col : int) :
void

getColumnLimits (col : int) : String

setColumnLimits (limits : String, col : int) : void

getColumnFormat (col : int) : String

setColumnFormat (format : String, col : int) :
void

isCellEditable (row : int, col : int) : boolean

isColumnEditable (col : int) : boolean

setColumnEditable (editable : boolean, col :
int) : void

getValueAt (row : int, col : int) : Object

setValueAt (aValue : Object, row : int, col : int)
: void

getTableEditor (col : int) : TableCellEditor Returns a TableEditor for the specified column.

getEditor (rowValue : int, colValue : int) :
Jcomponent

Returns an editor for the specified row and column of the
DataElement.

getEditor (col : int) : Jcomponent Returns an editor for any element in the specified column.

THE LINK PACKAGE

The Link package contains classes that link ASAC models or analyses to each
other. The package contains the LinkSet, Link, and LinkCanvas classes. The class
diagram is shown in Figure 6-18.

6-28

Figure 6-18. Link Package Diagram

Mo

(from event)

<<Interface>>

Ve

(from util)

JC

(from sw ing)

LinkCanvas

$ maxDistance : double = 10.0

LinkCanvas(links : LinkSet)
paint(g : Graphics) : void
findLink(e : MouseEvent) : Link
<<static>> computeDistance(link : Link, p : Point) : double
<<static>> computeDistance(p1 : Point, p2 : Point) : double

(from asac)

LinkSet

$ nullSet : LinkSet

LinkSet()
LinkSet (count : int)
getCount() : int
setCount(count : int) : void
get(index : int) : Link
set(index : int, link : Link) : void
toSetString() : String

(from asac)

-mLinks

Model

(from asac)

JLabel

(from s w ing)

Link

$ CLEAR : int = 0
$ BREAK_BEFORE : int = 1
$ BREAK_AFTER : int = 2
$ arrowLength : double = 15
$ arrowAngle : double = 0.5
$ arrowWidth : double = 8
mState : int = CLEAR
mHit : boolean = false

Link()
toString() : String
getLabel() : JLabel
getInput() : Model
setInput(input : Model) : void
getOutput() : Model
setOutput(output : Model) : void
isHit() : boolean
setHit(hit : boolean) : void
getState() : int
setState(state : int) : void
toggleState() : void
<<static>> setStateColor(state : int, color : Color) : void
<<static>> getStateColor(state : int) : Color
getStateColor() : Color
<<static>> setStateIcon(state : int, icon : ImageIcon) : void
<<static>> getStateIcon(state : int) : ImageIcon
getStateIcon() : ImageIcon
<<static>> getCenter(label : JLabel) : Point
getInputCenter() : Point
getOutputCenter() : Point
paint(g : Graphics) : void
updateLabel() : void

(from asac)

**

-mInput

-mOutput

-mLabel

The LinkSet Class

A LinkSet is a collection of Link objects keyed by index. The LinkSet is derived
from the dynamic java.util.Vector class with Link objects as elements. A list of
properties and methods for this class can be found in Table 6-11.

Table 6-11. Properties and Methods for LinkSet Class

Public Properties:

nullSet : LinkSet An empty set of links.

Public Methods:

LinkSet () : Constructor.

LinkSet (count : int) : Constructor with the number of links in the collection.

getCount () : int Returns the number of links in the collection.

setCount (count : int) : void Sets the number of links in the collection.

get (index : int) : Link Returns the link at the specified index.

set (index : int, link : Link) : void Sets the link at the specified index.

toSetString () : String Converts the LinkSet to a string.

The Link Class

A Link connects two Models, an input model to the output model. The Link class
is similar to the DataRelation class on the server. Breakpoints may be placed be-
fore or after the transformation in the link. The link is represented by a line on the
analysis graph pane and an arrow is used to indicate the direction of the data trans-

Aviation System Analysis Capability Executive Assistant Beta Version

6-29

formation. A list of properties and methods for this class can be found in
Table 6-12.

Table 6-12. Properties and Methods for Link Class

Public Properties:

$CLEAR : int = 0 Enumerated states of a link.

$BREAK_BEFORE : int = 1

$BREAK_AFTER : int = 2

$arrowLength : double = 15 The length of the arrow to paint.

$arrowAngle : double = 0.5 The angle (radians) of the arrow to paint.

$arrowWidth : double = 8 The width of the arrow to paint.

Private Properties:

mState : int = CLEAR The link state.

mHit : boolean = false Maintains if the breakpoint has been hit.

Public Methods:

Link () : Constructor.

toString () : String Converts a Link to a string.

getLabel () : Jlabel Returns a label or icon to symbolize the state of the link.

getInput () : Model Returns the Input model.

setInput (input : Model) : void Specifies the input model.

getOutput () : Model Returns the output model.

setOutput (output : Model) : void Specifies the output model.

isHit () : boolean Checks to see if the breakpoint on the link has been hit.

setHit (hit : boolean) : void Specifies the hitting of the breakpoint on the link.

getState () : int Returns the enumerated state of the link.

setState (state : int) : void Specifies the state of the link.

toggleState () : void Toggles the enumerated state of the link.

setStateColor (state : int, color :
Color) : void

Specifies the color for the enumerated state.

getStateColor (state : int) : Color Returns the color of the specified state.

getStateColor () : Color Returns the color of the link.

setStateIcon (state : int, icon :
ImageIcon) : void

Specifies the icon for the state.

getStateIcon (state : int) : Im-
ageIcon

Returns the icon for the specified state.

getStateIcon () : ImageIcon Returns the icon for the state of the link.

getCenter (label : JLabel) : Point Internal helper routine needed when drawing the lines to the
center of the input and output models.

6-30

Table 6-12. Properties and Methods for Link Class (Continued)

getInputCenter () : Point Returns the center of the input model.

getOutputCenter () : Point Returns the center of the output model.

paint (g : Graphics) : void Routine to paint a link on a graphic object.

updateLabel () : void Updates the label or icon to reflect the current enumerated
status of the link.

The LinkCanvas Class

A LinkCanvas is the background canvas of an Analysis graph model frame. The
LinkCanvas is used to draw the link lines and handle mouse events for the links.
The LinkCanvas is derived from JComponent and implements the MouseListener
interface. A list of properties and methods for this class can be found in
Table 6-13.

Table 6-13. Properties and Methods for LinkCanvas Class

Public Properties:

maxDistance : double = 10.0 The maximum pixel distance the mouse can be away from a
link.

Public Methods:

LinkCanvas (links : LinkSet) : Constructor requires a set of Links.

paint (g : Graphics) : void Paints the links on the canvas.

findLink (e : MouseEvent) : Link Routine to determine which link the mouse is near.

computeDistance (link : Link, p :
Point) : double

Internal helper routine to compute the distance between a
link and a point.

computeDistance (p1 : Point, p2
: Point) : double

Internal routine to compute the distance between to points.

THE SERVER PACKAGE

The Server package contains the classes that deal with the communication be-
tween the client and the server. The class diagram is shown Figure 6-19.

Aviation System Analysis Capability Executive Assistant Beta Version

6-31

Figure 6-19. Server Package Diagram

Orb

<<static>> getAnalysisServer() : EA.AnalysisServer
<<static>> ge tClient() : asac .Client
<< sta tic>> ge tLoginInfo () : EA.LoginInfo
<<sta tic>> ge tAnaly sisLis t() : asac .ModelS et
<<static>> ge tUserList() : String[]
<<sta tic>> isAnaly sisServerReady() : boo lean
<<static>> isClientReady() : boolean
<<sta tic>> isReady() : boo lean
<<static>> init(args : String[]) : void
<<static>> updateAnalysisServer () : void
<<sta tic> > openAna lys is(ana lysisKey : S tr ing, copy : boo lean) : asac.A naly sis
<<sta tic>> runA na ly sis(ana ly sisKey : String) : void
<<static>> resumeAnalysis(ana lysis : Analysis) : void
<<sta tic>> saveAnalysis(analys is : A naly sis) : vo id
<<static>> canc elAnalysis(analysisKey : String) : void
<<static>> convert(analysis : asac.Analysis, from : EA.Specification) : asac .Model
<<static>> convert(analysis : asac.Analysis, from : EA.Specification, to : asac.Model) : void
<<sta tic> > convert(analy sis : asac.Ana lysis , crea te : boo lean, from : E A.S peci fica tion, to : asac.Model) : vo id
<<static>> convert(parent : asac.Analysis, from : EA.Relationship) : asac .L ink
<<static>> convert(parent : asac.Analysis, from : EA.Relationship , to : asac.Link) : void
<<static>> convert(from : EA.DataElement[]) : asac .DataElementSet
<<static>> convert(from : E A.DataElement[], to : asac.DataElementSet) : void
<<sta tic>> convert(fr om : EA.DataE lemen t) : asac .DataElement
<<sta tic>> convert(from : EA.DataE lemen t, to : asac .DataElement) : void
<<static>> convert(from : asac.DataElementS et) : EA.DataElement[]
<<static>> convert(from : asac.DataElementS et, to : E A.DataElement[]) : void
<<sta tic>> convert(fr om : asac.DataE lement) : EA.DataElement
<<sta tic>> convert(from : asac.DataElement, to : EA.DataElement) : void

(from asac)

Client

update_state(scenarioKey : String, modelKey : String, state : EA.Status) : void
breakpoint(scenar ioKey : String , id : int) : vo id
<<static>> addFrameListener(mainFrame : MainFrame) : void
<<static >> removeFr ameL istener (ma inFrame : MainFrame) : vo id

(from asac)

- $mClient

MainFrame
(from asac)**

_ClientImplBase
(fro m E A)

The Orb Class

The Orb is a static class that contains all the operations that a client needs for
communicating with the server. The operations include initializing the communi-
cation link; retrieving various information from the server; and loading, saving, or
executing analyses. A list of properties and methods for this class can be found in
Table 6-14.

Table 6-14. Properties and Methods for Orb Class

Public Methods:

getAnalysisServer () : EA.AnalysisServer Returns the global instance of the EA.AnalysisServer.

getClient () : asac.Client Returns the global instance of Client.

getLoginInfo () : EA.LoginInfo Returns the global instance of EA.LoginInfo.

6-32

Table 6-14.. Properties and Methods for Orb Class (Continued)

getAnalysisList () : asac.ModelSet Returns the global list of analyses currently running.

getUserList () : String[] Returns a list of users registered to use the ASAC EA.

isAnalysisServerReady () : boolean Checks to see if the analysis server is ready.

isClientReady () : boolean Checks to see if the client is ready.

isReady () : boolean Checks to see if the Orb is ready which implies that
the analysis server and the client are both ready.

init (args : String[]) : void Initializes the Orb.

updateAnalysisServer () : void Updates the analysis server.

openAnalysis (analysisKey : String, copy :
boolean) : asac.Analysis

Opens an analysis on the server.

runAnalysis (analysisKey : String) : void Executes an analysis on the server.

resumeAnalysis (analysis : Analysis) : void Resumes an analysis on the server.

saveAnalysis (analysis : Analysis) : void Saves an analysis on the server.

cancelAnalysis (analysisKey : String) : void Cancels an analysis on the server.

convert (analysis : asac.Analysis, from :
EA.Specification) : asac.Model

Data converting routines between the client and the
server.

convert (analysis : asac.Analysis, from :
EA.Specification, to : asac.Model) : void

convert (analysis : asac.Analysis, create :
boolean, from : EA.Specification, to :
asac.Model) : void

convert (parent : asac.Analysis, from :
EA.Relationship) : asac.Link

convert (parent : asac.Analysis, from :
EA.Relationship, to : asac.Link) : void

convert (from : EA.DataElement[]) :
asac.DataElementSet

convert (from : EA.DataElement[], to :
asac.DataElementSet) : void

convert (from : EA.DataElement) :
asac.DataElement

convert (from : EA.DataElement, to :
asac.DataElement) : void

convert (from : asac.DataElementSet) :
EA.DataElement[]

convert (from : asac.DataElementSet, to :
EA.DataElement[]) : void

convert (from : asac.DataElement) :
EA.DataElement

convert (from : asac.DataElement, to :
EA.DataElement) : void

Aviation System Analysis Capability Executive Assistant Beta Version

6-33

The Client Class

The Client is derived from EA._ClientImplBase and contains all the operations
that the AnalysisServer needs for communicating with a client. The operations
include updating model states or setting breakpoints. All client MainFrames must
register and unregister with the global instance of Client to receive updates from
the server. A list of properties and methods for this class can be found in
Table 6-15.

Table 6-15. Properties and Methods for Client Class

Public Methods:

update_state (scenarioKey : String,
modelKey : String, state : EA.Status)
: void

Called by the server to update the state of the model
specifications.

breakpoint (scenarioKey : String, id :
int) : void

Called by the server when a breakpoint is hit.

addFrameListener (mainFrame :
MainFrame) : void

Method used to register a mainframe with the client.

removeFrameListener (mainFrame :
MainFrame) : void

Method used to unregister a mainframe.

THE MODEL PACKAGE

The Model package contains classes that concern ASAC models and analyses.
The package consists of the ModelSet, Model, and Analysis. The class diagram is
shown in Figure 6-20.

6-34

Figure 6-20. Model Package Diagram

M ouseM otionLis tener
(from even t)

<< Interface>>

M ouseLis tener

(from even t)

<< Interface>>

Vec tor

(from u til)

Lin

(from asac)

M odelSet

$ nullSet : M odelSet

M odelSet()
M odelSet(count : int)
getCount() : int
setCount(count : int) : void
get(index : int) : M odel
get(key : S tring) : M odel
set(index : int, m odel : M odel) : void
add(m odel : M odel) : void
rem ove(m odelK ey : S tring) : void
rem ove(m odel : M odel) : void
toS etS tring() : S tring

(from asac)

Analys is Desk top

(from asac)

DataE lem entS et

Analys

m GraphFram eKey : S tring

Analys is ()
toS tring() : S tring
getM odels () : M odelSet
getLinks () : LinkSet
getGraphFram eKey() : S tring
setGraphFram eKey(key : S tring) : void
getGraphFram e() : M odelFram e
getInputM odel() : M odel
getOutputM odel() : M odel
setS tate(s tate : int) : void
getInput() : DataE lem entS et
setInput(des : DataE lem entSet) : void
getOutput() : DataE lem entSet
setOutput(des : DataE lem entSet) : void

(from asac)

-m Links

-m M odels

JLabel

(from sw in g)

M odel

$ W AITING : int = 0
$ READY : int = 1
$ RUNNING : int = 2
$ DONE : int = 3
$ E RROR : int = 4
m S tate : int = W AITING
m K ey : S tring
m Description : S tring
m Tim eEs tim ate : S tring

M odel()
toS tring()
getKey()
setKey()
getDescription()
setDescription()
getTim eE stim ate()
setTim eE stim ate()
getAnaly s is ()
setAnaly s is ()
getDesk top()
setDesk top()
getInput()
set Input()
getOutput()
setOutput()
getS tate()
setS tate()
<<s tatic> > setS tateColor()
<<s tatic> > getS tateColor()
getS tateColor()
<<s tatic> > setS tateIcon()
<<s tatic> > getS tateIcon()
getS tateIcon()
getLabel()
getNam e()
setNam e()
updateLabel()

(from asac)
**

-m Desk top

-Input

-Output

-m A nalys is

-m InputM odel

-m OutputM odel

-m Label

The ModelSet Class

A ModelSet is a collection of Model objects, each with an associated key. The
ModelSet is derived from the dynamic java.util.Vector class with Model objects
as elements. A list of properties and methods for this class can be found in
Table 6-16.

Aviation System Analysis Capability Executive Assistant Beta Version

6-35

Table 6-16. Properties and Methods for ModelSet Class

Public Properties:

nullSet : ModelSet An empty ModelSet.

Public Methods:

ModelSet () : Constructor.

ModelSet (count : int) : Constructor specifying the number of models in the
collection.

getCount () : int Returns the number of model in the collection.

setCount (count : int) : void Sets the number of modes in the collection.

get (index : int) : Model Returns the model at the specified index.

get (key : String) : Model Returns the model with the specified key.

set (index : int, model : Model) : void Set the model at the specified index.

add (model : Model) : void Adds a model to the collection.

remove (modelKey : String) : void Removes the model with the specified key from the
collection.

remove (model : Model) : void Removes the specified model from the collection.

toSetString () : String Converts the collection to a string.

The Model Class

A Model transforms an input DataElementSet to an output DataElementSet. A
model is very similar to the DataTransformer class on the server. The Model class
implements the MouseListener and the MouseMotionListener interfaces. A Model
also is part of an Analysis and contains a label on the Analysis graph pane. A list
of properties and methods for this class can be found in Table 6-17.

Table 6-17. Properties and Methods for Model Class

Public Properties:

WAITING : int = 0 Enumerated states of a Model.

READY : int = 1

RUNNING : int = 2

DONE : int = 3

ERROR : int = 4

Private Properties:

mState : int = WAITING The enumerated state (Waiting, Ready, Running,
Done, Error) of the model.

mKey : String The unique key for the model.

6-36

Table 6-17. Properties and Methods for Model Class (Continued)

mDescription : String The narrative description for the model.

mTimeEstimate : String The estimated time for the model to execute.

Public Methods:

Model () : Constructor.

toString () : String Converts the model to a string.

getKey () : String Returns the unique identifier for the model.

setKey (key : String) : void Specifies the unique identifier for the model.

getDescription () : String Returns a narrative description for the model.

setDescription (description : String) : void Sets the narrative description for the model.

getTimeEstimate () : String Returns the estimated time it takes for the model to
run.

setTimeEstimate (timeEstimate : String) :
void

Sets the estimated time for the model to run.

getAnalysis () : Analysis Returns the parent analysis for the model.

setAnalysis (analysis : Analysis) : void Sets the parent analysis for the model.

getDesktop () : AnalysisDesktop Returns the desktop for the model.

setDesktop (desktop : AnalysisDesktop) :
void

Specifies the desktop for the model.

getInput () : DataElementSet Returns the input data element set for the model.

setInput (des : DataElementSet) : void Sets the input data element set for the model.

getOutput () : DataElementSet Returns the output data element set for the model.

setOutput (des : DataElementSet) : void Sets the output data element set for the model.

getState () : int Returns the enumerated state of the model.

setState (state : int) : void Sets the model state.

setStateColor (state : int, color : Color) :
void

Specifies the color for the enumerated state.

getStateColor (state : int) : Color Returns the color for the specified state.

getStateColor () : Color Returns the color for the state of the model.

setStateIcon (state : int, icon : ImageIcon) :
void

Specifies the icon for the state.

getStateIcon (state : int) : ImageIcon Returns the icon for the specified state.

getStateIcon () : ImageIcon Returns the icon for the state of the model.

getLabel () : Jlabel Returns the label representing the model.

getName () : String Returns the text on the label that names the model.

setName (name : String) : void Specifies the text on the label for the model.

updateLabel () : void Updates the label according to the state of the model.

Aviation System Analysis Capability Executive Assistant Beta Version

6-37

The Analysis Class

An Analysis is a Model with a set of models and a set of links. An Analysis con-
tains a GraphFrame, a ModelFrame with a graph of the model calling sequence.
The Analysis also contains an input and output Model on the Analysis Graph-
Frame. A list of properties and methods for this class can be found in Table 6-18.

Table 6-18. Properties and Methods for Analysis Class

Private Properties:

mGraphFrameKey : String The key for the graph model frame.

Public Methods:

Analysis () : Constructor.

toString () : String Converts an analysis to a string.

getModels () : ModelSet Returns the models of the analysis.

getLinks () : LinkSet Returns the links of the analysis.

getGraphFrameKey () : String Returns the unique key for the analysis graph on the desk-
top.

setGraphFrameKey (key :
String) : void

Sets the unique key for the analysis graph frame on the
desktop.

getGraphFrame () : Model-
Frame

Returns the ModelFrame with the analysis graph.

getInputModel () : Model Override specific model methods.

getOutputModel () : Model

setState (state : int) : void

getInput () : DataElementSet

setInput (des : DataElementSet)
: void

getOutput () : DataElementSet

setOutput (des : DataElement-
Set) : void

THE TREE PACKAGE

The Tree package contains classes that organize the ASAC analyses. The package
contains the AnalysisManager, AnalysisNode, and Access. The class diagram is
shown in Figure 6-21.

6-38

Figure 6-21. Tree Package Diagram

DefaultM utableTreeNode

(fro m tre e)

M ous eLis tener

(fro m e ve n t)

< <Interfa ce>> M ous eM otion Lis ten er

(fro m e ve n t)

< < Interface>>

TreeE x pans ionLis tener

(fro m e ve n t)

< <In te rface>>

M ainFram e

(fro m a sa c)

A nalys is

(fro m a sa c)

JS crollP ane

(from s w in g)

A nalysis M anage r

An aly s is Ma nage r(fram e : M ainF ram e)
get P ane() : JSc rol lP ane

getA nalys is () : A naly s is
openA nalys is (analys is K ey : S tring, c opy : boolean) : void
c loseA nalys is () : void

get A c ti on(s : S tri ng) : A c t ion

(fro m a sa c)

JTree

(from s w in g)

An aly s isN ode

m Nam e : S tring
m Owner : S tring

A nalys is Node()

A nalys is Node(nam e : S tring)
A nalys is Node(nam e : S tring, allowsChil dren : boolean)
isLeaf() : boolean

getNam e() : S tring
setNam e(nam e : S tring) : void

getOwner() : S tring
setOwner(owner : S tring) : void

getA cc ess () : DefaultLis tM odel
addA cc ess (a : A cc ess) : void
rem oveA ccess(i : int) : void
getA cc ess Index(userNam e : S tring) : int

can(userNam e : S tring, level : int) : boolean
propertiesDialog(parent : java.awt.Fram e) : void

(fro m a sa c)

**

Ac c ess

$ RE AD : i nt = 0
$ W R ITE : in t = 1

$ DE LE TE : i nt = 2
m Level : boolean[]
m Us e rNam e : S t ring

getLevel Count() : i nt

Ac c ess()
getUs erNam e() : S trin g

setUserNam e(us erNam e : S tring) : void
can(level : int) : boolean
set(level : int, fl ag : b oolean) : void

toS tring() : S tring

(fro m a sa c)

**

The AnalysisManager Class

The AnalysisManager class uses the tree paradigm to manage the set of analyses
on the server. The AnalysisManager contains a JTree, which organizes the
AnalysisTreeNodes. The AnalysisManager implements the MouseListener, the
MouseMotionListener, and the TreeExpansionListener and provides a front end
for analysis operations like copying, renaming, and displaying properties. A list of
properties and methods for this class can be found in Table 6-19.

Aviation System Analysis Capability Executive Assistant Beta Version

6-39

Table 6-19. Properties and Methods for AnalysisManager Class

Public Methods:

AnalysisManager (frame :
MainFrame) :

Constructor.

getPane () : JScrollPane Returns the pane of the tree.

getAnalysis () : Analysis Returns the current analysis.

openAnalysis (analysisKey :
String, copy : boolean) : void

Opens the specified analysis.

closeAnalysis () : void Closes the current analysis.

getAction (s : String) : Action Returns the specified action.

The AnalysisNode Class

An AnalysisNode is a tree node that contains the information necessary for load-
ing and setting properties of the analysis or scenario on the server. The
AnalysisNode is derived from a DefaultMutableTreeNode and provides the name
and owner along with permission levels for the scenario or analysis. A list of
properties and methods for this class can be found in Table 6-20.

Table 6-20. Properties and Methods for AnalysisNode Class

Private Properties:

mName : String The name of the analysis.

mOwner : String The owner of the analysis.

Public Methods:

AnalysisNode () : Constructor.

AnalysisNode (name : String) : Constructor.

AnalysisNode (name : String,
allowsChildren : boolean) :

Constructor.

isLeaf () : boolean Overrides the isLeaf() method from DefaultMutableTree-
Node.

getName () : String Returns the name of the analysis.

setName (name : String) : void Specifies the name of the analysis.

getOwner () : String Returns the owner of the analysis.

setOwner (owner : String) : void Specifies the owner of the analysis.

getAccess () : DefaultListModel Returns the access list.

addAccess (a : Access) : void Adds an access to the list.

removeAccess (I : int) : void Removes an access from the list.

6-40

Table 6-20. Properties and Methods for AnalysisNode Class (Continued)

getAccessIndex (userName :
String) : int

Returns the access level of the specified user.

can (userName : String, level :
int) : boolean

Test if the user has the access level.

propertiesDialog (parent :
java.awt.Frame) : void

Displays and allows the user to edit the properties of the
analysis.

The Access Class

The Access class controls the permission levels a user has on a particular analysis
or scenario. A list of properties and methods for this class can be found in Ta-
ble 6-21.

Table 6-21. Properties and Methods for Access Class

Public Properties:

READ : int = 0 Enumerated permission levels.

WRITE : int = 1

DELETE : int = 2

Private Properties:

 mLevel : boolean[] The list of permission levels (read, write, and delete).

mUserName : String The user’s name.

Public Methods:

Access () : Constructor.

getLevelCount () : int The number of levels.

getUserName () : String Returns the user's name.

setUserName (userName :
String) : void

Sets the user's name.

can (level : int) : boolean Tests for user permission on the specified access level.

set (level : int, flag : boolean) :
void

Sets or clears the specified access level.

toString () : String Converts the access to a string.

THE DESKTOP PACKAGE

The Desktop Package contains the AnalysisDesktop and the ModelFrames to be
placed on the desktop. The class diagram is shown in Figure 6-22.

Aviation System Analysis Capability Executive Assistant Beta Version

6-41

Figure 6-22. Desktop Package Diagram

The AnalysisDesktop Class

The AnalysisDesktop Class provides the interface for adding ModelFrames to the
desktop. The AnalysisDesktop provides a hierarchical relationship between
ModelFrames. A list of properties and methods for this class can be found in
Table 6-22.

Ana lys is Des ktop

tActions : m yActions = new m yActions ()

Ana lys is De s kto p()

getDe s ktop() : JD es ktopPane

getMo de lFram eC ount () : in t

ge tMode lFr am e At(i : int) : ModelF ra m e

re m ove(mo delF ra m e : ModelF ra m e) : void

add (m od elFram e : M od elFram e) : void

getCh ild ren(p a ren tF ram e : Mo delF ram e) : Mod el Fr am e[]

getMo de lFr am e (key : S tri ng) : Mo de lF ra m e

add Or Ra is e(m o delF ra m e : Mod elF ra m e) : void

getAction (s : String) : Action

(fr om a sa c)

Model

(from a sa c)

-m D es ktop

D ataElem en tSe t

(from a sa c)

+ Inpu t
+Ou tput

L inkC anvas

(fr om a sa c)

In te rn al Fram eL is tene r

(from e ve n t)

<<In te rface>>

Mo delF ra m e

m D is p lay : S tring

m K ey : Str ing

Model Fram e()

g etPa re ntFra m e() : Mo de lF ra m e

s etPa re ntFra m e(pa re ntF ra m e : Mod elF ra m e) : void
g etMo de l() : Mo de l

s etMo de l(m o de l : Model) : void

getD is p lay() : S tring

s etDis p lay(d isp la y : Strin g) : void

g et Input () : D ataE lem e ntSe t

s etInput (des : D a taEle m en tSet) : void

getOu tpu t() : Da taElem entSe t

s etOu tp ut(de s : D ataE le m en tSe t) : void

g etKe y() : Str ing

g etFram e() : JIn te rna lFra m e

getD es ktop() : Analys is D es ktop

getC h ild ren() : Mode lFram e[]

d oC lo se () : void

doOK() : vo id

doC ance l() : vo id

doApp ly() : vo id
g etGraphP anel () : JScro l lPane

needs Separa tePanel(de : Da taElem ent) : boolean

i sE di tab le (de : Data Elem e nt) : b oole an

i sE di tab le (des : D a taE le m en tSet) : b oole an

g etIOPa ne l() : J C om p on en t

g etDES Pa ne l(d es : D ata El em e ntSe t, i sIn pu t : bo o lea n) : J C om pon en t

g etDEP an el(da ta Elem en t : D ataE lem e nt, is In pu tD E : boo lea n) : J Com p on en t

g etSe pa ra te DE Pan el(da ta Elem en t : D ata El em e nt) : J C om p on en t

(from a sa c)

-m Paren tFram e

-m Mode l

-m Inpu t

-m O utpu t

-m C opyInput

-m C opyOu tput

JIn terna lFram e

(from sw in g)

-m Fram e

6-42

Table 6-22. Properties and Methods for AnalysisDesktop Class

Public Methods:

AnalysisDesktop () : Constructor.

getDesktop () : JdesktopPane Returns the actual desktop.

getModelFrameCount () : int Returns the number of frames on the desktop.

getModelFrameAt (I : int) :
ModelFrame

Returns the frame at the specified index.

remove (modelFrame : Model-
Frame) : void

Removes a frame from the desktop.

add (modelFrame : Model-
Frame) : void

Adds a frame to the desktop.

getChildren (parentFrame :
ModelFrame) : ModelFrame[]

Returns the children of a ModelFrame on the desktop.

getModelFrame (key : String) :
ModelFrame

Returns the modelframe with the specified key.

addOrRaise (modelFrame :
ModelFrame) : void

Adds or raises the frame on the desktop.

getAction (s : String) : Action Returns the specified desktop action.

The ModelFrame Class

ModelFrames are the internal desktop frames on the AnalysisDesktop. Each
ModelFrame has a parent (except the top level) and children, which are Model-
Frames. The ModelFrames also may contain a set of input and output
DataElementSets that may be edited or viewed by the user or updated by the
server. A list of properties and methods for this class can be found in Table 6-23.

Table 6-23. Properties and Methods for DataElementSet Class

Public Methods:

ModelFrame () : Constructor.

getParentFrame () : ModelFrame Returns the parent model frame.

setParentFrame (parentFrame :
ModelFrame) : void

Specifies the parent model frame.

getModel () : Model Returns the model.

setModel (model : Model) : void Specifies the model.

getDisplay () : String Returns the display .

setDisplay (display : String) : void Specifies the display.

getInput () : DataElementSet Returns the input DataElementSet.

Aviation System Analysis Capability Executive Assistant Beta Version

6-43

Table 6-22. Properties and Methods for AnalysisDesktop Class (Continued)

setInput (des : DataElementSet) : void Specifies the input DataElementSet.

getOutput () : DataElementSet Return the output DataElementSet.

setOutput (des : DataElementSet) :
void

Specifies the output DataElementSet.

getKey () : String Returns the unique key for the modelframe.

getFrame () : JinternalFrame Returns the internal frame.

getDesktop () : AnalysisDesktop Returns the desktop.

getChildren () : ModelFrame[] Returns the children on the desktop.

doClose () : void Closes the modelframe.

doOK () : void Performs the OK button action.

doCancel () : void Performs the Cancel button action.

doApply () : void Performs the Apply button action.

getGraphPanel () : JScrollPane Returns the graph panel or parent of the model-
frame.

needsSeparatePanel (de : DataEle-
ment) : boolean

Checks if the DataElement needs to be displayed on
a separate panel.

isEditable (de : DataElement) : boolean Checks if the DataElement is editable.

isEditable (des : DataElementSet) :
boolean

Checks if the DataElementSet is editable.

getIOPanel () : Jcomponent Returns the display panel for the input and output
DataElementSets.

getDESPanel (des : DataElementSet,
isInput : boolean) : Jcomponent

Returns the display panel for the DataElementSet.

getDEPanel (dataElement :
DataElement, isInputDE : boolean) :
Jcomponent

Returns the display panel for the DataElement.

getSeparateDEPanel (dataElement :
DataElement) : Jcomponent

Returns the display panel for the DataElement when
it needs a separate panel.

THE FRAME PACKAGE

The Frame Package contains the main window frame. The class diagram is shown
in Figure 6-23.

6-44

Figure 6-23. Frame Package Diagram

JFram e

(from sw ing)

JSp litPane

(from sw ing)

Ana lys is MenuBar

(from asac)

JAp plet

(from sw ing)

Ma inFram e

getApplet() : Japp le t
getFram e() : JFram e
getSplitPane() : JSp litPane
getDes ktop() : Analys is Des ktop
getMenuBar() : Ana lys is MenuBar
doC los e() : void
getAction(s : String) : Action
getIm ageIcon(iconNam e : String) : Im ageIcon

(from asac)

Anal ys is De sk top

(from asac)

Wind owLi sten er

(fro m eve nt)

<<Inte rface>>

The MainFrame Class

The MainFrame is the main window frame of the ASAC EA. A list of properties
and methods for this class can be found in Table 6-24.

Table 6-24. Properties and Methods for MainFrame Class

Public Methods:

getApplet () : Japplet Returns the applet.

getFrame () : Jframe Returns the frame.

getSplitPane () : JSplitPane Returns the SplitPane object.

getDesktop () : AnalysisDesktop Returns the desktop.

getMenuBar () : AnalysisMenu-
Bar

Returns the MenuBar.

doClose () : void Unregisters with the ORB and closes the mainframe.

getAction (s : String) : Action Returns the specified action.

getImageIcon (iconName :
String) : ImageIcon

Gets an image from local disk or URL.

DSSA Substage 4-7: Develop State Diagrams

The Client GUI uses colors and icons to display the states of Models and Links or
breakpoints. The actual states of the objects are maintained by the AnalysisServer.
Thus, the state diagrams for the client classes are the same as the state diagrams
for the classes on the AnalysisServer. The Model class on the Client uses the same
states as the DataTransformer class on the AnalysisServer. The Models have four
states: Waiting, Running, Done and Error. The Client GUI uses an icon to repre-
sent each state:

Aviation System Analysis Capability Executive Assistant Beta Version

6-45

u A Clock represents Waiting.

u A Flag represents Running.

u A Check represents Done.

u An “X” represents Error.

In addition to these icons, the border of the model’s label on the analysis graph
uses color to represent the state.

u Blue for Waiting

u Green for Running

u Green for Done

u Red for Error.

Each Analysis scenario is a subclass of Model and, therefore, inherits the states
and icons from the Model class.

The Links or breakpoints are similar to the DataRelationship class on the Analy-
sisServer and, consequently, uses the same state diagrams. The Links have three
states, Clear, Break Before, and Break After, to represent where the breakpoint
will occur. The Links have an arrow drawn on the line to indicate direction of the
data transformation. The Links use line color with an icon to represent the state.

u For a Clear Link, the line is blue.

u For a Break Before Link, the line is red with an icon near the starting
Model.

u For a Break After Link, the line is red with an icon near the ending Model.

The Links also use a Boolean attribute to determine if the breakpoint has been
reached.

DSSA Substage 4-8: Develop Deployment Diagrams

The Deployment Diagram is the same as shown in Figure 6-9.

DSSA Substage 4-9: Review and Iterate

Review and iterate the items developed in DSSA stage 4.

6-46

DSSA STAGE 5—IDENTIFY REUSABLE ARTIFACTS

The goal for this phase of the domain-engineering process is to populate the soft-
ware architecture high-level design(s) with components that may be used to gen-
erate new applications in the domain.

The following substages of DSSA stage 5 will be completed during the ASAC
design effort:

u 5-1 Develop and collect the reusable artifacts

u 5-2 Develop each module

u 5-3 Requirements, verification, and testing

u 5-4 Review and iterate.

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts

No additional components need to populate the software architecture for the
ASAC EA Beta version.

DSSA Substage 5-2: Develop Each Module

The development environment and process are the same as described in
Chapter 5.

DSSA Substage 5-3: Requirements, Verification, and Testing

ASAC EA BETA VERSION REQUIREMENTS

As previously mentioned, fifty-two requirements were applicable to the ASAC
EA Beta version. They are:

Analysis Execution

u AE0001 The analyst shall have the capability to execute an analysis if an
off-line administrator has granted the appropriate permissions.

u AE0002 The analyst shall have the capability to view and modify model
input data at user-defined intermediate steps in the analysis. Any modifi-
cations to the model inputs shall be logged.

u AE0003 When an analysis is executed, the names of the models that are
executed, as part of that analysis, will be logged to a log file.

Aviation System Analysis Capability Executive Assistant Beta Version

6-47

u AE0004 When an analysis is executed, its inputs and outputs will be
logged.

u AE0005 When a model is executed, its inputs and outputs will be logged.

u AE0006 Upon completion of the execution of an analysis, the results will
be presented to the user if the user is logged into the system.

u AE0007 Analysis and Model outputs shall be viewable in both raw and
converted format.

u AE0008 ASAC will provide a message to the user indicating a rough esti-
mated time required to execute an analysis. Note: This will be a very rough
estimate, as there are currently no plans to perform an interrogation of net-
work and system(s) loading at the time of execution to provide a better es-
timate, not to mention the affect of data set size on model execution time.

u AE0009 ASAC EA shall support the execution of analyses in the “back-
ground” after users have logged off of the system.

u AE0010 The ASAC EA shall optionally mail a notification of analysis
completion or suspension to the user, if the user is not logged into the
system.

u AE0011 Users shall be able to cancel the execution of an analysis at any
user pre-defined intermediate step.

u AE0012 Users shall be able to log back in and check the progress of, or
cancel “active” analyses for which they have the appropriate permissions.
When an analysis finishes, it shall remain “active” until the user views its
outputs.

u AE0013 Analyses can be restarted from the beginning after their execution
has finished or been canceled.

u AE0014 Users shall be able to set breakpoints on any data relationship.
Breakpoints shall be settable before or after data conversion occurs in the
data relationship.

u AE0015 Users shall be able to set preferences regarding e-mail delivery of
various status messages that can get sent when they are not logged into the
system.

Analysis Management

u AM0001 The capability shall be provided to create an analysis by using
off-line tools.

6-48

u AM0002 The Analyst shall have the capability to view an existing analysis
if an off-line administrator has granted the appropriate permissions.

u AM0003 The capability shall be provided to update an analysis by using
off-line tools.

u AM0004 The Analyst shall have the capability to delete an analysis if an
off-line administrator has granted the appropriate permissions.

u AM0005 The Analyst shall have the capability to copy an analysis if an
off-line administrator has granted the appropriate permissions.

u AM0006 The capability shall be provided to store an analysis to the server
for private or public use by using off-line tools.

u AM0007 The Analyst shall have the capability to store the results of an
analysis to the server for private or public use if an off-line administrator
has granted the appropriate permissions.

Analysis Specification

u AS0001 An analysis may contain one or more models or analyses.

u AS0002 Analyses may have default input values.

u AS0003 Default analysis input values may be overridden by the user.

Distributed Computing

u DC0001 ASAC will accommodate operation of its models at remote sites.

u DC0002 ASAC EA shall provide the capability to allow analysts to run
more than one analysis concurrently.

u DC0003 ASAC EA shall support the concurrent execution of more than
one instance of the same analysis on the same or different machines.

u DC0004 ASAC EA shall support the concurrent execution of more than
one instance of the same model on the same or different machines.

u DC0005 The physical location of the models shall be transparent to the
ASAC EA.

u DC0006 ASAC EA shall support a distributed application server model
that allows multiple clients and servers to be located on different physical
host machines.

Aviation System Analysis Capability Executive Assistant Beta Version

6-49

u DC0007 ASAC EA shall allow users to run more than one analysis si-
multaneously.

Error Handling

u EH0001 The user shall be notified if the web server is not available (han-
dled by the browser)

u EH0002 The user shall be notified if the analysis server is not available.

u EH0003 The user shall be notified if a model server is not available.

u EH0004 The user shall be notified if the analysis server encounters a fail-
ure during analysis execution.

u EH0005 The user shall be notified if a model server encounters a failure
during model execution.

u EH0006 The user shall be notified if an invalid data type or value for
analysis/model input is specified.

u EH0007 The user shall be notified if the database is not available or if a
database access error is encountered.

General

u GE0001 The user application will have an intuitive graphical user inter-
face that adheres to the IBM CUA standards.

 Model Specification

u MS0001 Models shall have valid default values upon initialization (when
added to an analysis).

u MS0002 An off-line administrator shall have the capability to add new
models to the system by:

ä Developing (or adding developed) models that match a well-defined
interface.

ä Creating model specifications in a TBD database that specifies the
model parameters. e.g. inputs, outputs, and description.

ä Writing and adding model wrappers that translate/map the well-
defined model interface data element sets (DESs) to the model-specific
interface for the model being added to the system. (i.e. translators from
DESs to model inputs and translators from model outputs to DESs)

6-50

u MS0003 Models may have default input values.

u MS0004 Default Model input values may be overridden by the user.

u MS0005 EA model inputs may be an ASCII file.

Security

u SE0001 An off-line system administrator will define the level of authori-
zation for analyses and scenarios on a per-user or per-group basis.

u SE0002 The owning user shall have permissions to view & execute an
analysis if an off-line administrator has granted the appropriate permis-
sions.

u SE0005 An off-line administrator shall control user access to models.

u SE0006 Users must log into the system.

u SE0007 User authentication must be at least as secure as HTTP basic
authentication.

u SE0010 An off-line administrator shall be able to define groups of users
for authorization. Users can belong to multiple groups.

u SE0011 Scenarios will have Read, Write, and Delete permissions associ-
ated with them. Analyses will only have Read permissions. Anybody able
to read an analysis can create a scenario for that analysis and execute it.

These fifty-two requirements will be validated as part of the ASAC EA Beta ver-
sion acceptance.

ASAC EA BETA VERSION IMPLEMENTATION

The analyses used for implementing the Beta version are the analyses that were
implemented for the ASAC Model Integration Prototype (First Generation ASAC)
and documented in the Aviation System Analysis Capability Executive Assistant
Design.

ASAC EA BETA VERSION TESTING

Procedures are being created for testing each of the ASAC EA Beta version re-
quirements. The documentation and results of these tests will be published in the
NASA Contractor Report for the ASAC EA for fiscal year 1999.

Aviation System Analysis Capability Executive Assistant Beta Version

6-51

ASAC EA BETA VERSION RELEASE 1

The first release of the ASAC EA Beta version will be available for use by se-
lected users on 31 October 1998. It will be accessible from the ASAC Web site at
http://www.asac.lmi.org.

DSSA Substage 5-4: Review and Iterate

Review and iterate the items developed in DSSA stage 5.

7-1

Chapter 7
Conclusion

The work performed this fiscal year on the ASAC EA system builds upon the
work documented in the ASAC EA Architecture Description and the Aviation
System Analysis Capability Executive Assistant Design.

We successfully developed, tested, and demonstrated the ASAC EA POC to
NASA in February and March 1998. We then used published and respected
methodologies for expanding the ASAC EA POC design for the ASAC EA Beta
version system. The expanded design includes a Use Case diagram, Interaction
(Sequence and Collaboration) diagrams, Package diagrams, Class diagrams, State
diagrams, and Deployment diagrams. We are completing the development of the
ASAC EA Beta version system and plan to field the version in late October 1998.

We also evaluated OOD management systems for use in the ASAC EA system.
Furthermore, we selected additional software libraries and development tools.

Work will continue on the ASAC EA Beta version, and the ASAC EA version 1.0
will be fielded in fiscal year 1999.

Bib-1

BIBLIOGRAPHY

Bellin, David and Susan Suchman Simone. “The CRC Card Book,” Addison-
Wesley, 1997.

Booch, Grady. “Object Solutions, Managing the Object-Oriented Project,”
Addison-Wesley, 1997.

Coad, Peter, and Mark Mayfield, “Java Design: Building Better Apps & Applets”,
Yourdon Press, 1997.

Common Object Request Broker Architecture, OMG, July, 1995.

Common Object Services Specification, OMG, March, 1995.

CORBAServices: Common Object Services Specification, Vol. 1, March 1995.

Domain Specific Software Architectures (DSSA),
http://www.sei.cmu.edu/arpa/evo/dssa-sum.html.

Flanagan, David, “Java in a Nutshell”, O’Reilly, 1997.

Fowler, Martin, and Kendall Scott. “UML Distilled—Applying the Standard Ob-
ject Modeling Language,” Addison-Wesley, 1997.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. “Design Pat-
terns—Elements of Reusable Object-Oriented Software,” Addison-Wesley,
1995.

Hughes, Cameron, & Hughes, Tracey. Object-Oriented Multithreaded Using
C++. John Wiley & Sons, Inc. New York. 1997.

Lockheed Martin Advanced Concepts Center and Rational Software Corporation.
“Succeeding with the Booch and OMT Methods, A Practical Approach,”
Addison Wesley, 1996.

McConnell, Steve, “Code Complete”, Microsoft Press, 1993.

Mowbray, Thomas J. and Ron Zahavi. “The Essential CORBA,” Wiley, 1995.

Orfali, Robert, and Dan Harkey, “Client/Server Programming with Java and
CORBA”, Wiley Computing Publishing, 1997.

Orfali, Robert, Dan Harkey, and Jeri Edwards. “Instant CORBA,” Wiley, 1997.

Bib-2

Orfali, Robert, Dan Harkey, and Jeri Edwards. “The Essential Client/Server Sur-
vival Guide,” Wiley, 1996.

Orfali, Robert, Harkey, Dan, and Jeri Edwards. “The Essential Distributed Objects
Survival Guide,” Wiley, 1996.

Quatrani, Terry, “Visual Modeling with Ratoinal Rose and UML”, Addison-
Welsey, 1998.

Rational Software Corporation UML Resource Center, “UML Document Set Ver-
sion 1.1,” September 1997, http://www.rational.com/uml/references/.

Roberts, Eileen, and James A. Villani. “ASAC Executive Assistant Architecture
Description Summary," NASA Contractor Report 201681, April 1997.

Roberts, Eileen, James A. Villani, Mohammed Osman, David Godso, Brent King,
and Michael Ricciardi. “Aviation System Analysis Capability Executive As-
sistant Design," NASA Contractor Report 207679, May 1998.

Rumbaugh, James, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. “Object-
Oriented Modeling and Design,” Prentice Hall, 1991.

Tracz, W. and L. Coglianese. “Domain-Specific Software Architecture Engineer-
ing Process Guidelines, ADAGE-IBM-92-02B.” Loral Federal Systems,
Owego, 1992.

A-1

Appendix A
ASAC EA POC As-Run Test Procedures

This appendix contains the six procedures that were completed during ASAC EA
POC testing. They are

u Analysis Execution test procedures TP-AE-1 and TP-AE-2

u Analysis Management test procedure TP-AM-1

u Analysis Specification procedure TP-AS-1

u Distributed Computing procedure TP-DC-1

u Error Handling procedure TP-EH-3.

TEST PROCEDURE TP-AE-1
Requirements tested:

u AE0001 - The Analyst shall have the capability to execute an analysis if
an off-line administrator has granted the appropriate permissions.

u AE0006 - Upon completion of the execution of an analysis, the results will
be presented to the user.

u AE0008 - ASAC will provide a message to the user indicating a rough es-
timated time required to execute an analysis.

A-2

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory to
“/home/kander/ea_poc” .

1. None —

2. Run the Visibroker SmartAgent in the
background. Type: “osagent &”

2. None. —

3. Run the ModelServer. Type:
“ModelServer -configFile
poc.cfg &”

3. The ModelServer starts.
“CORBA Server Running…” is
displayed.

pass

4. Run the AnalysisClient. Type:
“AnalysisClient -analysis
poc
-logLevel 2”

4. Analysis is started, and a time estimate
is displayed.

pass

5. Wait for the analysis to finish. 5. Analysis finishes and displays results:
“asm = 160824.742268
 profit = -5172.724227”

pass

Appendix A: ASAC EA POC As-Run Test Procedures

A-3

TEST PROCEDURE TP-AE-2
Requirements tested:

u AE0003 - When an analysis is executed, the names of the models that are
executed, as part of that analysis, will be logged to a log file.

u AE0004 - When an analysis is executed, both its default and user-defined
inputs and outputs will be logged to a log file.

u AE0005 - When a model is executed, both its default and user-defined in-
puts and outputs will be logged to a log file.

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory (cd)
to “/home/kander/ea_poc” .

1. None —

2. Run the Visibroker SmartAgent in the
background. Type: “osagent &”

2. None. —

3. Run the ModelServer. Type:
“ModelServer -configFile
poc.cfg &”

3. The ModelServer starts.
“CORBA Server Running…” is
displayed.

pass

4. Run the AnalysisClient. Type:
“AnalysisClient -analysis
poc
-logFile log -logLevel 5”

4. The analysis is run and its results are
displayed. Results should be:
“asm = 160824.742268
 profit = -5172.724227”

pass

5. Display the contents of the log file.
Type:

 “more log” .

5. Log file is displayed, containing, in
this order, the names of the models
created, the links (data relationships)
between the models, the analysis input,
the input & output for each model, and
the analysis output.

pass

TEST PROCEDURE TP-AM-1
Requirements tested:

u AM0001 - The capability shall be provided to create an analysis by using
off-line tools.

u AM0003 - The capability shall be provided to update an analysis by using
off-line tools.

A-4

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory
to “/home/kander/ea_poc” .

1. None

2. Run the Visibroker SmartAgent in
the background. Type: “osagent
&”

2. None.

3. Run the ModelServer. Type:
“ModelServer -configFile
poc.cfg &”

3. The ModelServer starts.
“CORBA Server Running…” is dis-
played.

pass

4. Inspect the file “poc.as” and con-
firm that it exists and contains the
specification for an analysis (i.e. that
it has been created). Type “more
poc.as” .

4. The contents of the Analysis specification
file are displayed. It contains, a descrip-
tion, a time estimate, a list of data trans-
formers, a list of data relationships, a set
of inputs, and a set of outputs.

Pass, PR 1

5. Run the AnalysisClient. Type:
“AnalysisClient -analysis
poc”

5. The analysis is run and its results are dis-
played. Results should be:
“asm = 160824.742268
 profit = -5172.724227”

pass

6. Edit (update) the file “poc.as”
using vi, emacs, or similar tool.
Change the “passengers” variable in
the “inputs” section from 156 to 300,
and save the changes.

6. The Analysis specification is updated. pass

TEST PROCEDURE TP-AS-1
Requirements tested:

u AS0001 - An analysis may contain one or more models or analyses.

u AS0002 - Analyses may have default input values.

Appendix A: ASAC EA POC As-Run Test Procedures

A-5

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory to
“/home/kander/ea_poc”.

1. None —

2. Run the Visibroker SmartAgent in the
background. Type: “osagent &”.

2. None. —

3. Run the ModelServer. Type:
“ModelServer -configFile
poc.cfg &”.

3. The ModelServer starts.
“CORBA Server Running…” is displayed.

pass

4. Examine the specification for the analysis
named as1. Type “more as1.as”.

4. The “dataTransformers” section of the analysis
contains two models (traffic & cost), and two
transformers which are analyses (revenue-a &
profit-a). Also, the “inputs” section lists 5 vari-
ables, two that are “WAITING” (require user
input), the others are “READY” (have de-
faults).

pass

5. Confirm that revenue-a & profit-a are
really analyses. List all analysis specifica-
tions by typing “ls *.as”.

5. A list of all analysis specifications are dis-
played, including revenue-a & profit-a.

pass

6. Run the AnalysisClient. Type:
“AnalysisClient -analysis
as1”.

6. User is prompted for 2 inputs which do not
have default values. The other inputs (which
have default values) are not prompted for.

pass

7. Enter values for passengers and
stage_length when prompted. Enter “300”
for passengers and “1000” for
stage_length.

7. The analysis runs, and results are displayed:
Results should be:
“asm = 309278.350515
 profit = -9938.085052”

Pass

TEST PROCEDURE TP-DC-1
Requirements tested:

u DC0001 - ASAC will accommodate operation of its models at remote
sites.

u DC0003 - ASAC EA shall support the concurrent execution of more than
one instance of the same analysis on the same or different machines for
one or more users.

u DC0004 - ASAC EA shall support the concurrent execution of more than
one instance of the same model on the same or different machines for one
or more users.

u DC0005 - The physical location of the models shall be transparent to the
ASAC EA.

A-6

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory to
“/home/kander/ea_poc” .

1. None. —

2. Run the Visibroker SmartAgent in the background.
Type: “osagent &”

2. None. —

3. Run the ModelServer. Type: “ModelServer
-configFile riker.cfg -logLevel 4
&”

3. The ModelServer starts.
“CORBA Server Run-
ning…” and other messages are
displayed.

pass

4. Login to worf and change directory to
“/home/kander/ea_poc” .

4. None. —

5. Run the ModelServer. Type: “ModelServer

 -configFile worf.cfg -logLevel 4 &”

5. The ModelServer starts.
“CORBA Server Run-
ning…” and other messages are
displayed.

pass

6. Login to spock and change directory to
“/home/kander/ea_poc” .

6. None. —

7. Run the ModelServer. Type: “ModelServer
-configFile spock.cfg -logLevel 4
&”

7. The ModelServer starts.
“CORBA Server Run-
ning…” and other messages are
displayed.

pass

8. Verify the models are running on each machine.
Type “osfind” on riker.

8. A list of models is displayed,
showing traffic & profit models
running on riker, cost & revenue
models running on worf, and
traffic & revenue models running
on spock.

pass

9. Open two additional windows on riker & run the
AnalysisClient in two different windows simulta-
neously. Type: “AnalysisClient
-analysis poc” in each window.

9. Analyses are run, identical results
are displayed.

pass

10. Examine the output from the ModelServers to en-
sure that requirement DC0004 was met.

10. Each model of the same name
should have run more or less si-
multaneously, some on the same
machine, some on different ma-
chines.

pass

11. Open an additional window on worf & run the
AnalysisClient on riker and worf simultaneously.
Type: “AnalysisClient -analysis
poc” on each machine.

11. Analyses are run, identical results
are displayed.

pass

12. Again, examine the output from the ModelServers
to ensure that requirement DC0004 was met.

12. Same as #10 above. pass

Appendix A: ASAC EA POC As-Run Test Procedures

A-7

TEST PROCEDURE TP-EH-3
Requirements tested:

u EH0003 - The user shall be notified if a model server is not available.

Operator Actions Expected Results Pass or Fail and
PR Number

1. Login to riker and change directory to
“/home/kander/ea_poc” .

1. None. —

2. Run the Visibroker SmartAgent in the
background. Type: “osagent &”

2. None. —

3. Run the ModelServer. Type:
“ModelServer -configFile
eh3.cfg &”

3. The ModelServer starts.
“CORBA Server Running…” is
displayed.

pass

4. Verify the profit model is not running.
Type “osfind” on riker.

4. A list of object names (models) is dis-
played. The profit model should not
be among them.

pass

5. Run the AnalysisClient. Type:
“AnalysisClient -analysis
poc”

5. Analysis is run, and an error should be
generated that the profit model could
not be found. Should display:
“Model Server Unavailable:
profit”

pass

B-1

Appendix B
Abbreviations

ASAC Aviation System Analysis Capability

AST Advanced Subsonic Technology program

BOA basic object adapter

CGI Common Gateway Interface

CORBA Common Object Request Broker Architecture

CRC Class-Responsibility-Collaboration

DBMS Database Management System

DES DataElementSet

DSSA domain-specific software architecture

EA Executive Assistant

FAA Federal Aviation Administration

GUI graphical user interface

IDL Interface Definition Language

MB megabyte

NASA National Aeronautics and Space Administration

OMG Object Management Group

OMT object modeling technique

OO object oriented

OOD object-oriented design

ORB object request broker

PERL Practical Extraction and Report Language

POC Proof of Concept

QRS Quick Response System

RAM random-access memory

RCS revision control system

TBD to be determined

UML Unified Modeling Language

B-2

WWW World Wide Web

	NASA/CR- 1999-209119
	Aviation System Analysis Capability Executive Assistant Development
	March 1999

	cr209119title.pdf
	NASA/CR- 1999-209119
	Aviation System Analysis Capability Executive Assistant Development
	March 1999

